期刊文献+
共找到810篇文章
< 1 2 41 >
每页显示 20 50 100
基于ConvLSTM与LiteFlowNet架构的粒子图像测速方法
1
作者 刘心爱 孟娟 +1 位作者 杜海 李智远 《液晶与显示》 北大核心 2025年第7期1023-1035,共13页
在粒子图像测速(Particle Image Velocimetry,PIV)中,神经网络方法在处理高速流动或复杂非线性流动时,常面临粒子位置变化迅速导致追踪匹配困难、提取的特征尺度单一、有效特征的提取能力不足等问题。针对这些问题,基于卷积长短期记忆网... 在粒子图像测速(Particle Image Velocimetry,PIV)中,神经网络方法在处理高速流动或复杂非线性流动时,常面临粒子位置变化迅速导致追踪匹配困难、提取的特征尺度单一、有效特征的提取能力不足等问题。针对这些问题,基于卷积长短期记忆网络(ConvLSTM)与LiteFlowNet结构提出了一种新的流场估计与动态粒子追踪增强模型LiteFlowNet-CL。所提方法首先通过强化的LiteFlowNet模型提升了对复杂流动模式的辨识与表征能力,随后结合ConvLSTM网络的时序建模优势,有效抑制了高速运动粒子在不同时间步长下的追踪误差,从而大幅度降低粒子图像特征丢失的几率。为验证所提模型的有效性,通过仿真粒子图像进行模型性能对比测试和消融实验。实验结果表明,改进后的速度场估计模型取得了0.1004的均方根误差;相比LiteFlowNet经典光流估计模型,误差进一步降低了10.52%,与PIV领域广泛应用的LiteFlowNet-en高性能模型相比,误差进一步降低了1.463%。所提模型有效提升了粒子图像测速中复杂流场特征的捕捉能力,其误差精度可满足湍流分析的实验需求。本文为PIV算法优化提供了新的技术路径,对推动流体力学实验测量技术向更高时空分辨率发展具有应用价值。 展开更多
关键词 粒子图像测速 深度学习 注意力机制 卷积长短期记忆网络
在线阅读 下载PDF
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
2
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization Algorithm convolutional Neural network long short-term memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
基于Convolutional-LSTM的蛋白质亚细胞定位研究 被引量:2
3
作者 王春宇 徐珊珊 +2 位作者 郭茂祖 车凯 刘晓燕 《计算机科学与探索》 CSCD 北大核心 2019年第6期982-989,共8页
蛋白质亚细胞位置预测研究是目前蛋白质组学和生物信息学研究的重点问题之一。蛋白质的亚细胞定位决定了它的生物学功能,故研究亚细胞定位对了解蛋白质功能非常重要。由于蛋白质结构的序列性,考虑使用序列模型来进行亚细胞定位研究。尝... 蛋白质亚细胞位置预测研究是目前蛋白质组学和生物信息学研究的重点问题之一。蛋白质的亚细胞定位决定了它的生物学功能,故研究亚细胞定位对了解蛋白质功能非常重要。由于蛋白质结构的序列性,考虑使用序列模型来进行亚细胞定位研究。尝试使用卷积神经网络(convolutional neural network,CNN)、长短期记忆神经网络(long short-term memory,LSTM)两种模型挖掘氨基酸序列所包含的信息,从而进行亚细胞定位的预测。随后构建了基于卷积的长短期记忆网络(Convolutional-LSTM)的集成模型进行亚细胞定位。首先通过卷积神经网络对蛋白质数据进行特征抽取,随后进行特征组合,并将其送入长短期记忆神经网络进行特征表征学习,得到亚细胞定位结果。使用该模型能达到0.816 5的分类准确率,比传统方法有明显提升。 展开更多
关键词 蛋白质亚细胞定位 卷积神经网络(CNN) 长短期记忆神经网络(LSTM) 分类
在线阅读 下载PDF
基于ConvLSTM-CNN预测太平洋长鳍金枪鱼时空分布趋势 被引量:4
4
作者 杜艳玲 马玉玲 +3 位作者 汪金涛 陈珂 林泓羽 陈刚 《海洋通报》 CAS CSCD 北大核心 2024年第2期174-187,共14页
海洋渔场的变动由空间与环境因子共同驱动,渔场时空演变信息的精准预测是海洋捕捞的关键。本研究利用1995-2018年太平洋海域长鳍金枪鱼(Thunnus alalunga)的渔业生产统计数据,结合同期海洋环境数据包括海表面温度(Sea Surface Temperatu... 海洋渔场的变动由空间与环境因子共同驱动,渔场时空演变信息的精准预测是海洋捕捞的关键。本研究利用1995-2018年太平洋海域长鳍金枪鱼(Thunnus alalunga)的渔业生产统计数据,结合同期海洋环境数据包括海表面温度(Sea Surface Temperature,SST)、海表面盐度(Sea Surface Salinity,SSS)、初级生产力(Primary Productivity,PP)和溶解氧浓度(Dissolved Oxygen Concentration,DO),提出了一种融合卷积长短期记忆网络(Convolutional Long Short-Term Memory Networks,ConvLSTM)和卷积神经网络(Convolutional Neural Networks,CNN)的渔场时空分布预测模型。该模型引入特征提取模块,对时空因子进行编码,提取时空特征信息,同时采用CNN提取海洋环境变量的抽象特征,采用ConvLSTM提取渔业数据的高层时空关联信息,最后融合多种特征对渔场时空演变趋势进行预测。结果表明,模型的均方根误差为0.1036,较随机森林、BP神经网络和长短期记忆网络(Long Short Term Memory,LSTM)等传统渔场预报模型的预测误差降低15%~40%,预测的高产渔区与实际作业的高渔获量区匹配度为89%。该研究构建的渔场时空预测模型能够准确地预测出太平洋长鳍金枪鱼的时空分布,为太平洋长鳍金枪鱼的延绳钓渔业提供科学参考依据。 展开更多
关键词 长鳍金枪鱼 时空分布 融合卷积长短期记忆网络 卷积神经网络 太平洋
在线阅读 下载PDF
基于ConvLSTM的风机轴承寿命预测 被引量:2
5
作者 肖宗朕 杜浩飞 +3 位作者 王勇 张超 张丹丹 李建军 《组合机床与自动化加工技术》 北大核心 2024年第6期161-165,170,共6页
针对普通滚动轴承寿命预测模型在提取特征过程中存在特征提取不充分、预测误差大等问题,提出了基于双通道的卷积长短时记忆网络(ConvLSTM)风机轴承寿命预测模型。首先,将原始轴承振动信号进行小波阈值去噪,去除振动信号中的噪声干扰;其... 针对普通滚动轴承寿命预测模型在提取特征过程中存在特征提取不充分、预测误差大等问题,提出了基于双通道的卷积长短时记忆网络(ConvLSTM)风机轴承寿命预测模型。首先,将原始轴承振动信号进行小波阈值去噪,去除振动信号中的噪声干扰;其次,为充分提取特征采用双通道提取振动信号特征,其中一路为轴承振动信号信息,另一路为频域幅值信号;然后,采用ConvLSTM模型进行特征提取,该模型可同时兼顾空间局部特征和时间序列上的依赖关系,具有良好的特征提取能力;最后,将两路特征融合深入到全连接层,输出模型预测结果;此外,为提高模型预测准确率,还对损失函数作了相应改进。实验结果表明,所提模型轴承剩余寿命预测误差百分比均在20%以下,其误差百分比小于其他基于深度学习的模型。 展开更多
关键词 寿命预测 深度学习 卷积长短时记忆网络 振动信号 特征提取
在线阅读 下载PDF
预测全球电离层的多通道ConvLSTM模型 被引量:1
6
作者 陈鑫鑫 李淑慧 +1 位作者 陈栋 胡翔宇 《导航定位学报》 CSCD 北大核心 2024年第5期125-131,共7页
为了进一步提升导航高精度实时定位的精度,提出一种预测全球电离层的多通道ConvLSTM模型:根据全球电离层地图(GIM)时空变化非线性的特征以及电离层总电子含量(TEC)与太阳活动和地磁活动的相关性,提出以行星际三小时磁情指数(Kp)、太阳... 为了进一步提升导航高精度实时定位的精度,提出一种预测全球电离层的多通道ConvLSTM模型:根据全球电离层地图(GIM)时空变化非线性的特征以及电离层总电子含量(TEC)与太阳活动和地磁活动的相关性,提出以行星际三小时磁情指数(Kp)、太阳黑子数(SSN)以及TEC作为多通道输入的基于编码器-解码器的卷积-长短期记忆神经网络(ConvLSTM)模型;然后将2018-2020年的电离层TEC及相关数据作为数据集,提前1 d预测GIM。结果表明,基于多通道输入的模型在预测任务上具有显著优势,且不同输入的ConvLSTM模型皆优于欧洲定轨中心1 d预报GIM(C1PG)模型;在地磁平静期和磁暴期,多通道输入的模型表现良好。 展开更多
关键词 电离层总电子含量 多通道 卷积网络 长短期记忆神经网络 预测
在线阅读 下载PDF
Real-time UAV path planning based on LSTM network 被引量:2
7
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(UAV) long short-term memory(LSTM)
在线阅读 下载PDF
基于ConvLSTM的移动边缘计算服务器能耗模型
8
作者 李小龙 李曦 +1 位作者 杨凌峰 黄华 《应用科学学报》 CAS CSCD 北大核心 2024年第1期53-66,共14页
针对现有能耗模型对动态工作负载波动具有低敏感性和低精度的问题,该文基于卷积长短期记忆(convolutional long short-term memory, ConvLSTM)神经网络,提出了用于移动边缘计算的服务器智能能耗模型(intelligence server energy consump... 针对现有能耗模型对动态工作负载波动具有低敏感性和低精度的问题,该文基于卷积长短期记忆(convolutional long short-term memory, ConvLSTM)神经网络,提出了用于移动边缘计算的服务器智能能耗模型(intelligence server energy consumption model,IECM),用于预测和优化服务器的能量消耗。通过收集服务器运行时间参数,使用熵值法筛选和保留显著影响服务器能耗的参数。基于选定的参数,利用ConvLSTM神经网络训练服务器能耗模型的深度网络。与现有的能耗模型相比,IECM在CPU密集型、I/O密集型、内存密集型和混合型任务上,能够适应服务器工作负载的动态变化,并在能耗预测上具有更好的准确性。 展开更多
关键词 卷积长短期记忆 能耗预测 智能功率模型 功率建模
在线阅读 下载PDF
基于ConvLSTM的中国东南沿海波浪智能预报和评估
9
作者 金阳 韩磊 +1 位作者 金梅兵 董昌明 《海洋学研究》 CSCD 北大核心 2024年第3期88-98,共11页
相较于半理论半分析和数值模型的波浪预报方法,智能波浪预报有着精度高、计算资源需求低的优势。该文基于卷积长短期记忆网络(convolutional long short-term memory network,ConvLSTM)算法,建立了有效波高(significant wave height,SWH... 相较于半理论半分析和数值模型的波浪预报方法,智能波浪预报有着精度高、计算资源需求低的优势。该文基于卷积长短期记忆网络(convolutional long short-term memory network,ConvLSTM)算法,建立了有效波高(significant wave height,SWH)二维预报模型,以中国东南沿海2014—2022年ERA5数据进行训练,通过敏感性试验优化模型配置,并开展中国东南沿海SWH在2023年4个预报时效(6 h、12 h、18 h、24 h)下的预测性能评估。敏感性试验显示,输入时间序列长度N=4(即输入-18 h,-12 h,-6 h,0 h的SWH值)时,模型在4个预报时效下的准确性均优于其他时间序列长度;输入物理要素组合为SWH、平均波向和海面10 m风矢量时,模型在12 h、18 h和24 h预报时效下的准确性优于其他组合。通过对ConvLSTM模型训练及配置的精细调整,可以实现对中国东南沿海SWH的二维、高精度的智能预报。 展开更多
关键词 中国近海 卷积长短期记忆网络 数据驱动 海浪 有效波高 二维预报模型 短期预报 人工智能 深度学习
在线阅读 下载PDF
计及铁心非线性的变压器空间动态磁场加速计算方法 被引量:1
10
作者 司马文霞 孙佳琪 +3 位作者 杨鸣 邹德旭 彭庆军 王劲松 《电工技术学报》 北大核心 2025年第5期1559-1574,共16页
快速获得变压器空间磁场动态分布是构建变压器数字孪生体的基础之一,然而现有快速计算方法难以快速、准确地获得铁心饱和工况下的磁场分布特性。因此,该文提出了计及铁心非线性的变压器空间动态磁场加速计算方法。首先,构建变压器电磁... 快速获得变压器空间磁场动态分布是构建变压器数字孪生体的基础之一,然而现有快速计算方法难以快速、准确地获得铁心饱和工况下的磁场分布特性。因此,该文提出了计及铁心非线性的变压器空间动态磁场加速计算方法。首先,构建变压器电磁场路耦合仿真模型,对关键变量进行参数化扫描,仿真获得不同非线性工况下的大量磁场数据,构建涉及铁心非线性工况的主磁通和漏磁通数据集;其次,提出融合卷积神经网络(CNN)和长短期记忆网络(LSTM)的双分支深度学习模型,训练提取磁场数据的空间和时间特征,解决主、漏磁通差异大造成的模型训练难题;最后,利用模型获得输入电压、电流与内部空间磁场分布的非线性映射关系,实现空间动态磁场的加速计算,为变压器数字孪生体的构建提供了快速获得磁场数据的方法。 展开更多
关键词 非线性 卷积神经网络 长短期记忆网络 磁场 加速计算
在线阅读 下载PDF
基于数据驱动和机理模型的机械钻速预测 被引量:1
11
作者 郑双进 江厚顺 +4 位作者 熊梦园 孟胡 詹炜 程荣升 王立辉 《钻采工艺》 北大核心 2025年第1期78-87,共10页
为准确预测复杂工况下的机械钻速,提出了一种基于数据驱动和机理模型的机械钻速预测方法。首先对收集的8000余条钻井数据进行斯皮尔曼和曼特尔特性分析,筛选出有效施工参数,采用变分模态分解算法(VMD)进行数据降噪,然后构建时序卷积网... 为准确预测复杂工况下的机械钻速,提出了一种基于数据驱动和机理模型的机械钻速预测方法。首先对收集的8000余条钻井数据进行斯皮尔曼和曼特尔特性分析,筛选出有效施工参数,采用变分模态分解算法(VMD)进行数据降噪,然后构建时序卷积网络结合长短期记忆网络(TCN-LSTM)作为数据驱动模型,并融合多元钻速预测机理模型,通过物理约束增强数据驱动模型的准确性与可解释性,实验表明融合模型比单一数据驱动模型或机理模型预测精度更高。随后,为进一步提升模型性能,采用了改进的蜣螂优化算法(IDBO)对TCN-LSTM模型进行优化,通过改进种群初始化和更新策略,实现了参数的高效搜索。消融实验及现场应用结果表明,对比BP、RF、LSTM、TCN模型,TCN-LSTM-IDBO模型可以实现机械钻速的精确预测,并且具有较好的泛化能力,可为钻井施工人员提供有力参考。 展开更多
关键词 机械钻速预测 时序卷积网络 长短期记忆网络 变分模态分解 蜣螂优化算法 数据分析
在线阅读 下载PDF
基于Bi-LSTM和改进残差学习的风电功率超短期预测方法 被引量:2
12
作者 王进峰 吴盛威 +1 位作者 花广如 吴自高 《华北电力大学学报(自然科学版)》 北大核心 2025年第1期56-65,共10页
现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆... 现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆(Bi-LSTM)和改进残差学习的风电功率预测方法。方法由两个部分组成,第一部分是以Bi-LSTM为主的多残差块上,结合稠密残差块网络(DenseNet)与多级残差网络(MRN)的残差连接方式,并且在残差连接上使用一维卷积神经网络(1D CNN)来提取风电功率值中时序的非线性特征部分。第二部分是Bi-LSTM与全连接层(Dense)组成的解码器,将多残差块提取到的功率值时序非线性特征映射为预测结果。方法在实际运行的风电功率数据上进行实验,并与常见的残差网络方法和时间序列预测方法进行对比。方法相比于其他模型方法有着更高的预测精度以及更好的泛化能力。 展开更多
关键词 深度学习 残差网络 风电功率预测 双向长短时记忆 一维卷积神经网络
在线阅读 下载PDF
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法 被引量:2
13
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
基于ASFF-AAKR和CNN-BILSTM滚动轴承寿命预测 被引量:1
14
作者 张永超 刘嵩寿 +2 位作者 陈昱锡 杨海昆 陈庆光 《科学技术与工程》 北大核心 2025年第2期567-573,共7页
针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural net... 针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络(bi-directional long-short term memory,BILSTM)的轴承剩余寿命预测模型。首先,在时域、频域和时频域提取多维特征,利用单调性和趋势性筛选敏感特征;其次利用ASFF-AAKR对敏感特征进行特征融合构建健康指标;最后,将健康指标输入到CNN和BILSTM中,实现对滚动轴承的寿命预测。结果表明:所构建的寿命预测模型优于其他模型,该方法具有更低的误差、寿命预测精度更高。 展开更多
关键词 滚动轴承 自适应特征融合 自联想核回归 卷积神经网络 双向长短期记忆网络 剩余寿命预测
在线阅读 下载PDF
基于Vague软集的海上风电功率区间预测 被引量:1
15
作者 田书欣 朱峰 +2 位作者 杨喜军 符杨 苏向敬 《中国电机工程学报》 北大核心 2025年第4期1465-1476,I0019,共13页
海上风电输出功率的精准预测是保障海上风电并网系统调度运行的基础。针对海上风电海洋环境高度复杂、随机时空强烈耦合的特征,提出一种基于Vague软集的海上风电输出功率的新型区间预测方法。首先,引入Vague软集概念,提出融合Vague集真... 海上风电输出功率的精准预测是保障海上风电并网系统调度运行的基础。针对海上风电海洋环境高度复杂、随机时空强烈耦合的特征,提出一种基于Vague软集的海上风电输出功率的新型区间预测方法。首先,引入Vague软集概念,提出融合Vague集真隶属度和伪隶属度函数的交错式海上风电功率区间划分方法,实现风电功率数据Vague软区间化。其次,建立基于Vague-卷积神经网络(convolutional neural network,CNN)-长短期记忆神经网络(long short-term memory neural network,LSTM)的海上风电功率组合预测模型。通过类Vague软区间转换方法将双隶属度区间概率向量转化为海上风电功率复杂不确定信息下的区间预测结果。然后,从预测准确性、清晰性和兼顾性角度建立预测区间覆盖精度、预测区间宽度和预测综合水平等Vague软区间预测评估指标。最后,以我国东部某海上风电机组实际数据为算例进行验证。结果表明,所提预测模型预测结果可以兼顾预测区间的覆盖精度和清晰度,能够为海上风电不同工况下运行需求提供支撑。 展开更多
关键词 海上风电 Vague-卷积神经网络(CNN)-长短期记忆神经网络(LSTM)模型 Vague软集 软区间转换 区间预测
在线阅读 下载PDF
融合二次分解的深度学习模型在PM_(2.5)浓度预测中的应用 被引量:1
16
作者 江雨燕 黄体臣 +1 位作者 甘如美江 王付宇 《安全与环境学报》 北大核心 2025年第1期296-309,共14页
针对PM_(2.5)质量浓度时间序列呈非线性难以预测的特征,为了进一步提高PM_(2.5)质量浓度预测精确度,研究通过“分而治之”先分解再预测的思想,提出一种融合二次分解的PM_(2.5)质量浓度混合预测模型(Complete Ensemble Empirical Mode De... 针对PM_(2.5)质量浓度时间序列呈非线性难以预测的特征,为了进一步提高PM_(2.5)质量浓度预测精确度,研究通过“分而治之”先分解再预测的思想,提出一种融合二次分解的PM_(2.5)质量浓度混合预测模型(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise-Variational Mode Decomposition-Temporal Convolutional Network-Bi-directional Long Short-Term Memory,CEEMDAN-VMD-TCN-BiLSTM)。该模型先由递归特征消除(Recursive Feature Elimination,RFE)进行特征筛选,随后使用自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)将2013—2016年北京市PM_(2.5)质量浓度序列分解为一系列高低频模态分量并计算各分量样本熵,将样本熵由K-means聚类整合为新的分量,再由变分模态分解(Variational Mode Decomposition,VMD)方法进行二次分解。最后,将所有分量先经时间卷积网络(Temporal Convolutional Network,TCN)进行特征提取,并通过双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)预测,叠加各分量预测值即为最终预测结果。消融试验结果显示,该模型相比于单次CEEMDAN分解模型均方根误差E_(MAPE)降低19.312%,绝对误差E_(MAE)降低34.423%,百分比误差E_(MAPE)与希尔不等系数E_(TIC)分别减少40.465百分点和59.794%。由此可见,研究在引入VMD构成二次分解模型相比于单次分解模型的预测误差更小,精度更高,可为决策者在PM_(2.5)质量浓度预测与治理等工作提供一定参考。 展开更多
关键词 环境工程学 PM_(2.5)质量浓度预测 自适应噪声的完备经验模态分解 变分模态分解 时间卷积网络 双向长短期记忆网络
在线阅读 下载PDF
基于ECA-TCN的数据中心磁盘故障预测 被引量:1
17
作者 张铭泉 王宝兴 《智能系统学报》 北大核心 2025年第2期389-399,共11页
随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-tem... 随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-temporal convolutional network,ECA-TCN)模型,通过结合传统卷积神经网络一维卷积的优势,融入扩张卷积和残差结构,并引入注意力机制,该模型能够提高磁盘故障预测的准确性和稳定性。在实验中,将ECA-TCN模型与其他经典深度学习方法进行了比较,实验结果表明,ECA-TCN模型在磁盘故障预测任务上具有较高的准确性和稳定性。 展开更多
关键词 磁盘故障预测 长短时记忆网络 循环神经网络 扩张卷积 高效通道注意力机制 神经网络模型 时间序列预测 深度学习优化
在线阅读 下载PDF
降水空间信息的处理策略对径流预测的影响
18
作者 高玉芳 何川 +1 位作者 彭涛 高勇 《水科学进展》 北大核心 2025年第1期143-154,共12页
降水空间信息的精确提取对径流预测的精度至关重要。本文以赣江流域为研究对象,基于长短期记忆网络(Long Short-Term Memory,LSTM)模型,设计原始图像、小波分解、统计特征、面平均值、区域划分5种降水空间信息提取方案,研究降水空间信... 降水空间信息的精确提取对径流预测的精度至关重要。本文以赣江流域为研究对象,基于长短期记忆网络(Long Short-Term Memory,LSTM)模型,设计原始图像、小波分解、统计特征、面平均值、区域划分5种降水空间信息提取方案,研究降水空间信息不同处理策略对基于LSTM模型的径流预测性能的影响。结果表明:相较于直接使用原始图像的方案,综合运用小波分解和统计特征提取的处理方法测试期纳什效率系数分别提升了11.5%和17.9%,同时也增强了模型的稳定性和解释性;不同的区域划分方法能结合土地利用、土壤类型等下垫面因素,反映降水响应的空间差异性,展现了对各流量等级的适应能力,相较于以流域平均值作为输入的方式,能明显提高捕捉高流量和低流量特征的能力。研究表明在基于LSTM模型的降雨—径流预测模型中引入降水空间信息,可以有效改善预测效果。 展开更多
关键词 径流预测 长短期记忆网络 卷积神经网络 小波变换
在线阅读 下载PDF
基于时间卷积和长短期记忆网络的短期云资源预测模型
19
作者 陈基漓 李海军 谢晓兰 《科学技术与工程》 北大核心 2025年第7期2856-2864,共9页
随着容器云技术的不断深入发展,通过预测分析云资源请求的整体趋势及高峰期,对于容器云资源的高效利用和合理分配具有重要意义。利用深度学习技术进行负载预测已经成为解决容器云资源利用率不平衡的关键技术。针对目前负载预测的单一模... 随着容器云技术的不断深入发展,通过预测分析云资源请求的整体趋势及高峰期,对于容器云资源的高效利用和合理分配具有重要意义。利用深度学习技术进行负载预测已经成为解决容器云资源利用率不平衡的关键技术。针对目前负载预测的单一模型和组合模型所存在的预测精度低以及捕获序列特征不充分问题,提出基于时间卷积和长短期记忆网络(temporal convolutional network-long short-term memory, TCN-LSTM)的短期云资源组合预测模型,组合模型中的空洞卷积在不减少特征尺寸的情况下增加感受野获取更长久的时间序列特征,其中残差网络可以跨层传递信息以加快网络的收敛,所获取的时间序列特征可有效提高LSTM的预测精度。利用阿里巴巴公开数据集的进行预测,实验表明所提出的模型与单一的预测模型以及其他组合模型进行对比分析,误差指标-平均绝对误差(mean absolute error, MAE)降低8%~13.7%,均方根误差(root mean squared error, RMSE)降低9.8%~13.1%,证明所提模型的有效性。 展开更多
关键词 容器云 云资源预测 时间卷积网络(TCN) 长短期记忆网络(LSTM)
在线阅读 下载PDF
煤矿井下供水管道泄漏孔径识别与定位
20
作者 杜京义 陈镇 +3 位作者 张嘉伟 李晨 高瑞 王鹏 《科学技术与工程》 北大核心 2025年第8期3296-3303,共8页
为快速识别煤矿井下泄漏点的位置及泄漏孔径,利用供水管道泄漏时产生的压力及流量信号,提出一种泄漏孔径识别与定位模型。首先利用模态能量熵和遗传算法结合包络熵对变分模态分解(variational mode decomposition,VMD)进行参数优化,再使... 为快速识别煤矿井下泄漏点的位置及泄漏孔径,利用供水管道泄漏时产生的压力及流量信号,提出一种泄漏孔径识别与定位模型。首先利用模态能量熵和遗传算法结合包络熵对变分模态分解(variational mode decomposition,VMD)进行参数优化,再使用VMD对压力信号进行降噪处理;采用卷积神经网络(convolutional neural networks,CNN)提取压力及流量信号的深层特征序列,长短时记忆网络(long short-term memory,LSTM)提取深层特征序列的时序特征,进行泄漏孔径识别与定位。实验结果表明:经过参数优化的变分模态分解,相较卡尔曼滤波、均值滤波、低通滤波在均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、信噪比(signal to noise ratio,SNR)、归一化互相关系数(normalized cross correlation,NCC)上均有提高,表明其能够有效降低噪声成分,保留有效信号;CNN-LSTM相较LSTM,在泄漏点定位中,MAE降低了65.97%,平均绝对百分比误差(mean absolute percentage error,MAPE)降低了61.22%,RMSE降低了59.11%。在泄漏孔径识别中,MAE降低了12.04%,MAPE降低了22.45%,RMSE降低了3.29%,证明CNN-LSTM可以充分利用管道压力及流量信号的空间及时间特征进行泄漏位置及孔径的识别,其检测效果相较LSTM更加准确和稳定。 展开更多
关键词 变分模态分解(VMD) 卷积神经网络(CNN) 长短时记忆网络(LSTM) 模态能量熵 遗传算法(GA) 包络熵
在线阅读 下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部