In order to calculate the electronic structure of correlated materials, we propose implementation of the LDA+Gutzwiller method with Newton's method. The self-consistence process, efficiency and convergence of calcul...In order to calculate the electronic structure of correlated materials, we propose implementation of the LDA+Gutzwiller method with Newton's method. The self-consistence process, efficiency and convergence of calculation are improved dramatically by using Newton's method with golden section search and other improvement approaches.We compare the calculated results by applying the previous linear mix method and Newton's method. We have applied our code to study the electronic structure of several typical strong correlated materials, including SrVO3, LaCoO3, and La2O3Fe2Se2. Our results fit quite well with the previous studies.展开更多
A class of third-order convergence methods of solving roots for non-linear equation,which are variant Newton's method, are given. Their convergence properties are proved. They are at least third order convergence nea...A class of third-order convergence methods of solving roots for non-linear equation,which are variant Newton's method, are given. Their convergence properties are proved. They are at least third order convergence near simple root and one order convergence near multiple roots. In the end, numerical tests are given and compared with other known Newton's methods. The results show that the proposed methods have some more advantages than others. They enrich the methods to find the roots of non-linear equations and they are important in both theory and application.展开更多
Independent component analysis (ICA) is the primary statistical method for solving the problems of blind source separation. The fast ICA is a famous and excellent algorithm and its contrast function is optimized by ...Independent component analysis (ICA) is the primary statistical method for solving the problems of blind source separation. The fast ICA is a famous and excellent algorithm and its contrast function is optimized by the quadratic convergence of Newton iteration method. In order to improve the convergence speed and the separation precision of the fast ICA, an improved fast ICA algorithm is presented. The algorithm introduces an efficient Newton's iterative method with fifth-order convergence for optimizing the contrast function and gives the detail derivation process and the corresponding condition. The experimental results demonstrate that the convergence speed and the separation precision of the improved algorithm are better than that of the fast ICA.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.2011CBA00108)the National Basic Research Program of China(Grant No.2013CB921700)the Foundation of LCP
文摘In order to calculate the electronic structure of correlated materials, we propose implementation of the LDA+Gutzwiller method with Newton's method. The self-consistence process, efficiency and convergence of calculation are improved dramatically by using Newton's method with golden section search and other improvement approaches.We compare the calculated results by applying the previous linear mix method and Newton's method. We have applied our code to study the electronic structure of several typical strong correlated materials, including SrVO3, LaCoO3, and La2O3Fe2Se2. Our results fit quite well with the previous studies.
基金Foundation item: Supported by the National Science Foundation of China(10701066)
文摘A class of third-order convergence methods of solving roots for non-linear equation,which are variant Newton's method, are given. Their convergence properties are proved. They are at least third order convergence near simple root and one order convergence near multiple roots. In the end, numerical tests are given and compared with other known Newton's methods. The results show that the proposed methods have some more advantages than others. They enrich the methods to find the roots of non-linear equations and they are important in both theory and application.
文摘Independent component analysis (ICA) is the primary statistical method for solving the problems of blind source separation. The fast ICA is a famous and excellent algorithm and its contrast function is optimized by the quadratic convergence of Newton iteration method. In order to improve the convergence speed and the separation precision of the fast ICA, an improved fast ICA algorithm is presented. The algorithm introduces an efficient Newton's iterative method with fifth-order convergence for optimizing the contrast function and gives the detail derivation process and the corresponding condition. The experimental results demonstrate that the convergence speed and the separation precision of the improved algorithm are better than that of the fast ICA.