电转气(power to gas, P2G)技术可将电能转化为天然气,在实现综合能源系统低碳经济调度方面发挥着重要作用。为解决P2G过程中O_(2)未充分利用的问题并进一步降低碳排放,文中提出一种考虑P2G富氧改进和混合光能利用的低碳综合能源系统。...电转气(power to gas, P2G)技术可将电能转化为天然气,在实现综合能源系统低碳经济调度方面发挥着重要作用。为解决P2G过程中O_(2)未充分利用的问题并进一步降低碳排放,文中提出一种考虑P2G富氧改进和混合光能利用的低碳综合能源系统。首先,利用P2G生产的O_(2)与CO_(2)混合作为助燃气体,P2G利用碳捕集的CO_(2)制造天然气供给燃气机组使用;然后,因锅炉效率受O_(2)浓度影响,通过遗传算法和Gurobi求解器的联合算法得出耗氧设备各时段的最优供氧状态;最后,通过混合光能利用提升光能效率,以减少化石能源使用。将富氧燃烧和混合光能利用引入综合能源系统,构建考虑P2G富氧改进和混合光能利用的综合能源系统低碳经济运行模型,并设置场景进行对比验证。仿真结果显示,对比富氧改进前CO_(2)排放量降低75.83%,对比无混合光能场景光能总出力增加9.79%,表明所提模型可有效降低碳排放和运行成本。展开更多
针对传统机组运行约束挤压风电并网空间及固体废弃物堆存量激增造成的环境污染问题,配置光热电站与电加热联合运行促进风电消纳,引入垃圾焚烧电厂与电转气联合运行实现CO_(2)再利用,提出一种含光热电站(concentrating solar power plant...针对传统机组运行约束挤压风电并网空间及固体废弃物堆存量激增造成的环境污染问题,配置光热电站与电加热联合运行促进风电消纳,引入垃圾焚烧电厂与电转气联合运行实现CO_(2)再利用,提出一种含光热电站(concentrating solar power plant,CSP)及垃圾焚烧电厂(waste to energy plant,WTE)的虚拟电厂低碳优化调度模型。基于非参数核密度估计和Frank-Copula函数构建风电和光热电站出力联合分布模型,并利用蜉蝣优化K-means聚类算法得到典型场景;构建电加热与光热电站联合运行模型,并在垃圾焚烧-电转气精细化碳利用模型的基础上,引入阶梯碳交易机制进一步约束系统碳排放;以虚拟电厂总运行成本最低为目标,提出一种基于混合策略改进的水循环算法进行求解。仿真结果表明,所建立模型能够有效促进风电消纳并降低系统碳排放。展开更多
文摘电转气(power to gas, P2G)技术可将电能转化为天然气,在实现综合能源系统低碳经济调度方面发挥着重要作用。为解决P2G过程中O_(2)未充分利用的问题并进一步降低碳排放,文中提出一种考虑P2G富氧改进和混合光能利用的低碳综合能源系统。首先,利用P2G生产的O_(2)与CO_(2)混合作为助燃气体,P2G利用碳捕集的CO_(2)制造天然气供给燃气机组使用;然后,因锅炉效率受O_(2)浓度影响,通过遗传算法和Gurobi求解器的联合算法得出耗氧设备各时段的最优供氧状态;最后,通过混合光能利用提升光能效率,以减少化石能源使用。将富氧燃烧和混合光能利用引入综合能源系统,构建考虑P2G富氧改进和混合光能利用的综合能源系统低碳经济运行模型,并设置场景进行对比验证。仿真结果显示,对比富氧改进前CO_(2)排放量降低75.83%,对比无混合光能场景光能总出力增加9.79%,表明所提模型可有效降低碳排放和运行成本。
文摘针对传统机组运行约束挤压风电并网空间及固体废弃物堆存量激增造成的环境污染问题,配置光热电站与电加热联合运行促进风电消纳,引入垃圾焚烧电厂与电转气联合运行实现CO_(2)再利用,提出一种含光热电站(concentrating solar power plant,CSP)及垃圾焚烧电厂(waste to energy plant,WTE)的虚拟电厂低碳优化调度模型。基于非参数核密度估计和Frank-Copula函数构建风电和光热电站出力联合分布模型,并利用蜉蝣优化K-means聚类算法得到典型场景;构建电加热与光热电站联合运行模型,并在垃圾焚烧-电转气精细化碳利用模型的基础上,引入阶梯碳交易机制进一步约束系统碳排放;以虚拟电厂总运行成本最低为目标,提出一种基于混合策略改进的水循环算法进行求解。仿真结果表明,所建立模型能够有效促进风电消纳并降低系统碳排放。