期刊文献+
共找到450篇文章
< 1 2 23 >
每页显示 20 50 100
Passivity analysis for uncertain stochastic neural networks with discrete interval and distributed time-varying delays 被引量:3
1
作者 P.Balasubramaniam G.Nagamani 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期688-697,共10页
The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the ... The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the delay is assumed to be time-varying and belongs to a given interval,which means that the lower and upper bounds of interval time-varying delays are available.By constructing proper Lyapunov-Krasovskii functional and employing a combination of the free-weighting matrix method and stochastic analysis technique,new delay-dependent passivity conditions are derived in terms of linear matrix inequalities(LMIs).Finally,numerical examples are given to show the less conservatism of the proposed conditions. 展开更多
关键词 linear matrix inequality(LMI) stochastic neural network PASSIVITY interval time-varying delay Lyapunov method.
在线阅读 下载PDF
Model algorithm control using neural networks for input delayed nonlinear control system 被引量:2
2
作者 Yuanliang Zhang Kil To Chong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期142-150,共9页
The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. ... The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. Neural networks have the ability to "learn"the characteristics of a system through nonlinear mapping to represent nonlinear functions as well as their inverse functions. This paper presents a model algorithm control method using neural networks for nonlinear time delay systems. Two neural networks are used in the control scheme. One neural network is trained as the model of the nonlinear time delay system, and the other one produces the control inputs. The neural networks are combined with the model algorithm control method to control the nonlinear time delay systems. Three examples are used to illustrate the proposed control method. The simulation results show that the proposed control method has a good control performance for nonlinear time delay systems. 展开更多
关键词 model algorithm control neural network nonlinear system time delay
在线阅读 下载PDF
Global exponential stability for delayed cellular neural networks and estimate of exponential convergence rate 被引量:1
3
作者 张强 马润年 许进 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第3期344-349,共6页
Some sufficient conditions for the global exponential stability and lower bounds on the rate of exponential convergence of the cellular neural networks with delay (DCNNs) are obtained by means of a method based on del... Some sufficient conditions for the global exponential stability and lower bounds on the rate of exponential convergence of the cellular neural networks with delay (DCNNs) are obtained by means of a method based on delay differential inequality. The method, which does not make use of any Lyapunov functional, is simple and valid for the stability analysis of neural networks with delay. Some previously established results in this paper are shown to be special casses of the presented result. 展开更多
关键词 global exponential stability convergence rate cellular neural networks with delay delay differential inequality.
在线阅读 下载PDF
Stability of discrete Hopfield neural networks with delay 被引量:1
4
作者 Ma Runnian 1,2 , Lei Sheping3 & Liu Naigong41. Telecommunication Engineering Inst., Air Force Engineering Univ., Xi’an 710071, P. R. China 2. Key Lab of Information Sciences and Engineering, Dalian Univ., Dalian 111662, P. R. China +1 位作者 3. School of Humanity Law and Economics, Northwestern Polytechnical Univ., Xi’an 710072, P. R. China 4. Science Inst., Air Force Engineering Univ., Xi’an 710051, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期937-940,共4页
Discrete Hopfield neural network with delay is an extension of discrete Hopfield neural network. As it is well known, the stability of neural networks is not only the most basic and important problem but also foundati... Discrete Hopfield neural network with delay is an extension of discrete Hopfield neural network. As it is well known, the stability of neural networks is not only the most basic and important problem but also foundation of the network's applications. The stability of discrete HJopfield neural networks with delay is mainly investigated by using Lyapunov function. The sufficient conditions for the networks with delay converging towards a limit cycle of length 4 are obtained. Also, some sufficient criteria are given to ensure the networks having neither a stable state nor a limit cycle with length 2. The obtained results here generalize the previous results on stability of discrete Hopfield neural network with delay and without delay. 展开更多
关键词 discrete Hopfield neural network with delay STABILITY limit cycle.
在线阅读 下载PDF
New results on the robust stability analysis of neural networks with discrete and distributed time delays
5
作者 Su Weiwei Chen Yiming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期592-597,共6页
Delay-dependent robust stability of cellular neural networks with time-varying discrete and distributed time-varying delays is considered. Based on Lyapunov stability theory and the linear matrix inequality (LMIs) t... Delay-dependent robust stability of cellular neural networks with time-varying discrete and distributed time-varying delays is considered. Based on Lyapunov stability theory and the linear matrix inequality (LMIs) technique, delay-dependent stability criteria are derived in terms of LMIs avoiding bounding certain cross terms, which often leads to conservatism. The effectiveness of the proposed stability criteria and the improvement over the existing results are illustrated in the numerical examples. 展开更多
关键词 neural networks delay-dependent robust stability Lyapunov stability theory linear matrix inequality(LMI) distributed delay norm-bounded uncertainties.
在线阅读 下载PDF
Robust stability for stochastic interval delayed Hopfield neural networks
6
作者 张玉民 沈铁 +1 位作者 廖晓昕 殷志祥 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第3期436-439,共4页
A type of stochastic interval delayed Hopfield neural networks as du(t) = [-AIu(t) + WIf(t,u(t)) + WIτf7τ(uτ(t)] dt +σ(t, u(t), uτ(t)) dw(t) on t≥0 with initiated value u(s) = ζ(s) on - τ≤s≤0 has been studie... A type of stochastic interval delayed Hopfield neural networks as du(t) = [-AIu(t) + WIf(t,u(t)) + WIτf7τ(uτ(t)] dt +σ(t, u(t), uτ(t)) dw(t) on t≥0 with initiated value u(s) = ζ(s) on - τ≤s≤0 has been studied. By using the Razumikhin theorem and Lyapunov functions, some sufficient conditions of their globally asymptotic robust stability and global exponential stability on such systems have been given. All the results obtained are generalizations of some recent ones reported in the literature for uncertain neural networks with constant delays or their certain cases. 展开更多
关键词 stochastic interval delayed Hopfield neural network brownian motion Ito formula robust stability.
在线阅读 下载PDF
Stability analysis of cellular neural networks with time-varying delay
7
作者 Wang Xingang1,4, Zhang Dongmei2 & Liu Jun3 1. Coll. of Information Engineering, Zhejiang Univ. of Technology, Hangzhou 310032, P. R. China 2. Coll. of Science, Zhejiang Univ. of Technology, Hangzhou 310032, P. R. China +1 位作者 3. Coll. of Science, Beihua Univ., Jilin 132000, P. R. China 4. School of Computer Engineering and Science, Shanghai Univ., Shanghai 200072, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期266-273,共8页
The global asymptotic stability of cellular neural networks with delays is investigated. Three kinds of time delays have been considered. New delay-dependent stability criteria are proposed and are formulated as the f... The global asymptotic stability of cellular neural networks with delays is investigated. Three kinds of time delays have been considered. New delay-dependent stability criteria are proposed and are formulated as the feasibility of some linear matrix inequalities, which can be checked easily by resorting to the recently developed interior-point algorithms. Based on the Finsler Lemma, it is theoretically proved that the proposed stability criteria are less conservative than some existing results. 展开更多
关键词 cellular neural networks time-varying delay integral inequality
在线阅读 下载PDF
Robust fuzzy control of Takagi-Sugeno fuzzy neural networks with discontinuous activation functions and time delays
8
作者 Yaonan Wang Xiru Wu Yi Zuo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期473-481,共9页
The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theor... The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theory.Based on linear matrix inequalities(LMIs),we originally propose robust fuzzy control to guarantee the global robust asymptotical stability of TSFNNs.Compared with the existing literature,this paper removes the assumptions on the neuron activations such as Lipschitz conditions,bounded,monotonic increasing property or the right-limit value is bigger than the left one at the discontinuous point.Thus,the results are more general and wider.Finally,two numerical examples are given to show the effectiveness of the proposed stability results. 展开更多
关键词 delayed neural network global robust asymptotical stability discontinuous neuron activation linear matrix inequality(LMI) Takagi-sugeno(T-S) fuzzy model.
在线阅读 下载PDF
Exponential stability for cellular neural networks: an LMI approach 被引量:1
9
作者 Liu Deyou Zhang Jianhua Guan Xinping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期68-71,共4页
A new sufficient conditions for the global exponential stability of the equilibrium point for delayed cellular neural networks (DCNNs) is presented. It is shown that the use of a more general type of Lyapunov-Krasov... A new sufficient conditions for the global exponential stability of the equilibrium point for delayed cellular neural networks (DCNNs) is presented. It is shown that the use of a more general type of Lyapunov-Krasovskii function enables the derivation of new results for an exponential stability of the equilibrium point for DCNNs. The results establish a relation between the delay time and the parameters of the network. The results are also compared with one of the most recent results derived in the literature. 展开更多
关键词 delayed cellular neural networks LMI neural networks Exponential stability
在线阅读 下载PDF
Improved results on passivity analysis of discrete-time stochastic neural networks with time-varying delay
10
作者 于建江 张侃健 费树岷 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第S1期63-67,共5页
The problem of passivity analysis for a class of discrete-time stochastic neural networks (DSNNs) with time-varying interval delay was investigated. The delay-dependent sufficient criteria were derived in terms of lin... The problem of passivity analysis for a class of discrete-time stochastic neural networks (DSNNs) with time-varying interval delay was investigated. The delay-dependent sufficient criteria were derived in terms of linear matrix inequalities (LMIs). The results are shown to be generalization of some previous results and are less conservative than the existing works. Meanwhile, the computational complexity of the obtained stability conditions is reduced because less variables are involved. A numerical example is given to show the effectiveness and the benefits of the proposed method. 展开更多
关键词 PASSIVITY DISCRETE-TIME stochastic neural networks (DSNNs) INTERVAL delay linear matrix INEQUALITIES (LMIs)
在线阅读 下载PDF
Adaptive fuze-warhead coordination method based on BP artificial neural network 被引量:3
11
作者 Peng Hou Yang Pei Yu-xue Ge 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期117-133,共17页
The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the... The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network(BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missiletarget intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuzewarhead coordination effect is less influenced by the location of the aim point. 展开更多
关键词 Aircraft vulnerability Fuze-warhead coordination BP artificial neural network Damage probability Initiation delay
在线阅读 下载PDF
Observed-based adaptive neural tracking control for nonlinear systems with unknown control directions and input delay
12
作者 DENG Yuxuan WANG Qingling 《Journal of Systems Engineering and Electronics》 2025年第1期269-279,共11页
Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncerta... Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach. 展开更多
关键词 adaptive neural network dynamic surface control unknown control direction input delay
在线阅读 下载PDF
Optimal Bandwidth Scheduling for Resource-constrained Networks 被引量:4
13
作者 LI Zu-Xin WANG Wan-Liang CHENG Xin-Min 《自动化学报》 EI CSCD 北大核心 2009年第4期443-448,共6页
关键词 网络控制系统 优化带宽调度 资源约束网络 服务质量
在线阅读 下载PDF
An Optimal Control Scheme for a Class of Discrete-time Nonlinear Systems with Time Delays Using Adaptive Dynamic Programming 被引量:17
14
作者 WEI Qing-Lai ZHANG Hua-Guang +1 位作者 LIU De-Rong ZHAO Yan 《自动化学报》 EI CSCD 北大核心 2010年第1期121-129,共9页
关键词 非线性系统 最优控制 控制变量 动态规划
在线阅读 下载PDF
基于模糊神经网络在线自学习的多智能体一致性控制 被引量:1
15
作者 张宪霞 唐胜杰 俞寅生 《自动化学报》 北大核心 2025年第3期590-603,共14页
针对多智能体系统分布式一致性控制问题,提出一种新的融合动态模糊神经网络(Dynamic fuzzy neural network,DFNN)和自适应动态规划(Adaptive dynamic programming,ADP)算法的无模型自适应控制方法.类似于强化学习中执行者-评论家结构,D... 针对多智能体系统分布式一致性控制问题,提出一种新的融合动态模糊神经网络(Dynamic fuzzy neural network,DFNN)和自适应动态规划(Adaptive dynamic programming,ADP)算法的无模型自适应控制方法.类似于强化学习中执行者-评论家结构,DFNN和神经网络(Neural network,NN)分别逼近控制策略和性能指标.每个智能体的DFNN执行者从零规则开始,通过在线学习,与其局部邻域的智能体交互而生成和合并规则.最终,每个智能体都有一个独特的DFNN控制器,具有不同的结构和参数,实现了最优的分布式同步控制律.仿真结果表明,本文提出的在线算法在非线性多智能体系统分布式一致性控制中优于传统基于NN的ADP算法. 展开更多
关键词 多智能体系统 自适应动态规划 动态模糊神经网络 分布式一致性控制 在线学习
在线阅读 下载PDF
基于自适应动态规划的一类非线性多智能体的事件触发控制
16
作者 陈炯 张飞建 王凯 《计算机应用与软件》 北大核心 2025年第7期155-160,共6页
针对一类非线性多智能体系统的最优控制设计基于事件触发的自适应动态规划的控制策略。该文设计基于事件触发的分布式最优控制器,不仅避免了冗余数据的传输还最小化每个智能体的性能函数;设计分布式多智能体性能指标函数并通过强化学习... 针对一类非线性多智能体系统的最优控制设计基于事件触发的自适应动态规划的控制策略。该文设计基于事件触发的分布式最优控制器,不仅避免了冗余数据的传输还最小化每个智能体的性能函数;设计分布式多智能体性能指标函数并通过强化学习的方法求得多智能体系统的HJB方程,从而获得系统的最优控制策略。通过Lyapunov方法和梯度下降法获得了基于事件触发的评价网络更新率,并证明了闭环控制系统的稳定性。最后通过MATLAB仿真实验验证了控制方法的有效性。 展开更多
关键词 非线性多智能体 事件触发 自适应动态规划 神经网络
在线阅读 下载PDF
基于CBAM-CNN的CPS负荷重分配攻击检测定位方法设计
17
作者 陆玲霞 马朝祥 +1 位作者 闫旻睿 于淼 《实验技术与管理》 北大核心 2025年第6期78-89,共12页
负荷重分配攻击是一种特殊的虚假信息注入攻击。对于电力信息物理系统,基于模型的方法难以检测定位多类型负荷重分配攻击,且针对多类型负荷重分配攻击的数据驱动检测定位方法研究较少。为此,设计了一种以双层规划模型为基础的,基于带卷... 负荷重分配攻击是一种特殊的虚假信息注入攻击。对于电力信息物理系统,基于模型的方法难以检测定位多类型负荷重分配攻击,且针对多类型负荷重分配攻击的数据驱动检测定位方法研究较少。为此,设计了一种以双层规划模型为基础的,基于带卷积注意力模块神经网络的负荷重分配攻击定位检测方法。首先对电力信息物理系统中的信息系统进行建模,总结得到三种信息侧负荷重分配攻击行为。随后建立考虑攻击者和调度中心管理者博弈关系的双层规划模型,针对不同攻击场景生成负荷重分配攻击数据集。为了检测定位不同类型的攻击,将所研究问题转化为多标签分类问题,利用卷积神经网络的卷积结构特性挖掘并学习具有稀疏标签数据的邻域信息,引入卷积注意力模块,从通道信息和空间信息两个角度增强网络对于重点信息的学习能力,改善了网络漏判率较高的问题,提高了网络检测定位性能。在38节点电力信息物理系统算例上进行仿真实验,验证了所提方法的有效性。与对比方法相比,所提方法对于三种攻击类型都有较低的误判率和漏判率,检测定位性能更加出色。 展开更多
关键词 电力信息物理系统 负荷重分配攻击 双层规划模型 数据驱动 卷积注意力模块 卷积神经网络
在线阅读 下载PDF
DeepCom-GCN:融入控制流结构信息的代码注释生成模型
18
作者 钟茂生 刘会珠 +1 位作者 匡江玲 严婷 《江西师范大学学报(自然科学版)》 北大核心 2025年第1期27-36,共10页
代码注释生成是指给定一个代码片段,通过模型自动生成一段关于代码片段功能的概括性自然语言描述.不同于自然语言,程序语言具有复杂语法和强结构性.部分研究工作只利用了源代码的序列信息或抽象语法树信息,未能充分利用源代码的逻辑结... 代码注释生成是指给定一个代码片段,通过模型自动生成一段关于代码片段功能的概括性自然语言描述.不同于自然语言,程序语言具有复杂语法和强结构性.部分研究工作只利用了源代码的序列信息或抽象语法树信息,未能充分利用源代码的逻辑结构信息.针对这一问题,该文提出一种融入程序控制流结构信息的代码注释生成方法,将源代码序列和结构信息作为单独的输入进行处理,允许模型学习代码的语义和结构.在2个公开数据集上进行验证,实验结果表明:和其他基线方法相比,DeepCom-GCN在BLEU-4、METEOR和ROUGE-L指标上的性能分别提升了2.79%、1.67%和1.21%,验证了该方法的有效性. 展开更多
关键词 代码注释生成 抽象语法树 控制流图 图卷积神经网络 软件工程 程序理解 自然语言处理
在线阅读 下载PDF
基于JAVA和MATLAB混合编程的堆石坝瞬变-流变参数反演分析
19
作者 吴浩东 狄圣杰 +2 位作者 张玉 黄鹏 刘静 《中国农村水利水电》 北大核心 2025年第4期71-76,83,共7页
利用现场监测数据对堆石坝瞬变-流变参数进行反演分析对于确保坝体的安全稳定至关重要。针对堆石坝瞬变-流变模型,采用MATLAB中经过训练的神经网络来描述瞬变-流变参数和变形之间的映射关系,利用JAVA编程遗传算法来寻找最优瞬变-流变参... 利用现场监测数据对堆石坝瞬变-流变参数进行反演分析对于确保坝体的安全稳定至关重要。针对堆石坝瞬变-流变模型,采用MATLAB中经过训练的神经网络来描述瞬变-流变参数和变形之间的映射关系,利用JAVA编程遗传算法来寻找最优瞬变-流变参数,以此建立了瞬变-流变参数的智能反演算法组合,并基于JAVA与MATLAB混合编程实现了瞬变-流变参数反演程序化,在西北某水电站面板堆石坝工程中得到应用和检验。结果表明,基于反演参数计算得到的计算沉降与实测沉降相对误差最大为4.33%,二者的时程曲线吻合较好,堆石坝变形在合理范围内并趋于稳定。研究成果满足精度和工程要求,可为堆石坝瞬变-流变参数反演提供一定的参考。 展开更多
关键词 堆石坝 瞬变-流变参数反演 混合编程 遗传算法 神经网络
在线阅读 下载PDF
时变二次规划的鲁棒归零神经网络求解模型
20
作者 黄庚 李旦 张建秋 《系统工程与电子技术》 北大核心 2025年第9期2775-2784,共10页
针对时变二次规划问题的离散时间归零神经网络求解模型中差分运算引入的噪声放大的问题,提出一种鲁棒的离散时间归零神经网络求解模型。首先,借助多项式预测滤波器,为差分运算建立状态空间模型。然后,利用对观测噪声鲁棒的卡尔曼滤波器... 针对时变二次规划问题的离散时间归零神经网络求解模型中差分运算引入的噪声放大的问题,提出一种鲁棒的离散时间归零神经网络求解模型。首先,借助多项式预测滤波器,为差分运算建立状态空间模型。然后,利用对观测噪声鲁棒的卡尔曼滤波器,给出鲁棒微分器。当用该鲁棒微分器替代求解模型中的差分运算时,含噪观测对其影响在最大后验概率的意义下最小化。最后,通过仿真实验,验证了所提方法在性能上优于现有的离散时间归零神经网络求解模型,特别是在存在观测噪声条件下。 展开更多
关键词 时变二次规划 归零神经网络 多项式预测滤波器 鲁棒微分器
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部