In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with t...In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with through hole and reinforced structure subjected to hydrostatic pressure were carried out by the designed experimental test system.The mechanical responses of the composite shells under hydrostatic pressure are obtained by the high-speed camera and strain measurement.The results show that the entire deformation process of the shell can be divided into three:uniform compression,"buckling mode formation"and buckling.The"buckling mode formation"process is captured and reported for the first time.For the composite shell with single hole,the proposed reinforcing structure has a significant reinforcement effect on the shell and the buckling capacity of the shell is not weaker than the complete composite shell.For the composite shell with through hole,sealing effect can be achieved by the proposed reinforcing structure,but the buckling capacity of the shell after reinforcement can only reach 77%of the original buckling capacity.展开更多
Based on the fatigue prediction model of exponential function and Whitney-Nuismer(WN) criterion of static strength for the composite material laminate with a circular hole, the stress correct factor ( β ) was put for...Based on the fatigue prediction model of exponential function and Whitney-Nuismer(WN) criterion of static strength for the composite material laminate with a circular hole, the stress correct factor ( β ) was put forward and a new fatigue prediction model for composite material laminate was set up. T300/KH304, which is recently studied and is a high capability composite material, was used as the raw material. In order to gain the factor β , the fatigue experiments of the laminates with holes in different diameters and the same ratio of width to diameter were conducted. The fatigue analysis and tests of the laminates with a hole 5 mm in diameter are carried out at different stress levels, and the results meet the engineering requirement. The simple, prompt and practical method is provided for the prediction of S-N curve of composite laminate with a circular hole.展开更多
基金supported by the Ningbo Major Research and Development Plan Project(Grant No.2024Z135)the Natural Science Basic Research Program of Shaanxi Province(Grant No.2024JC-YBMS-322)+1 种基金China Postdoctoral Science Foundation(Grant No.2020M673492)National Natural Science Foundation of China(Grant No.51909219)。
文摘In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with through hole and reinforced structure subjected to hydrostatic pressure were carried out by the designed experimental test system.The mechanical responses of the composite shells under hydrostatic pressure are obtained by the high-speed camera and strain measurement.The results show that the entire deformation process of the shell can be divided into three:uniform compression,"buckling mode formation"and buckling.The"buckling mode formation"process is captured and reported for the first time.For the composite shell with single hole,the proposed reinforcing structure has a significant reinforcement effect on the shell and the buckling capacity of the shell is not weaker than the complete composite shell.For the composite shell with through hole,sealing effect can be achieved by the proposed reinforcing structure,but the buckling capacity of the shell after reinforcement can only reach 77%of the original buckling capacity.
文摘Based on the fatigue prediction model of exponential function and Whitney-Nuismer(WN) criterion of static strength for the composite material laminate with a circular hole, the stress correct factor ( β ) was put forward and a new fatigue prediction model for composite material laminate was set up. T300/KH304, which is recently studied and is a high capability composite material, was used as the raw material. In order to gain the factor β , the fatigue experiments of the laminates with holes in different diameters and the same ratio of width to diameter were conducted. The fatigue analysis and tests of the laminates with a hole 5 mm in diameter are carried out at different stress levels, and the results meet the engineering requirement. The simple, prompt and practical method is provided for the prediction of S-N curve of composite laminate with a circular hole.