期刊文献+
共找到2,240篇文章
< 1 2 112 >
每页显示 20 50 100
Ballistic performance of titanium-based layered composites made using blended elemental powder metallurgy and hot isostatic pressing
1
作者 Pavlo Markovsky Jacek Janiszewski +5 位作者 Dmytro Savvakin Oleksandr Stasyuk Bartosz Fikus Victor Samarov Vianey Ellison Sergey V.Prikhodko 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期1-14,共14页
Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to... Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually. 展开更多
关键词 metal matrix composites Powder metallurgy Titanium hydride powder Master alloy Titanium carbide Titanium boride Hot isostatic pressing Ballistic tests
在线阅读 下载PDF
Ballistic performance of tungsten particle/metallic glass matrix composite long rod 被引量:8
2
作者 Ji-cheng Li Xiao-wei Chen Feng-lei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第2期132-145,共14页
In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the ... In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the corresponding finite element method(FEM) simulations a modified coupled thermomechanical constitutive model is employed to describe the mechanical properties of metallic glass(MG)matrix, and geometrical models of the WP/MG composite rod are established based on its inner structure. The deformation and failure characteristics of the rod and target materials are analyzed in detail,and the influences of various factors on the ballistic performance of the WP/MG composite long rod are discussed. Related analysis demonstrates that the penetrating performance of the WP/MG rod is similar to that of the tungsten fiber/metallic glass matrix(WF/MG) composite long rod, i.e., a "self-sharpening" behavior also occurs during the penetration process, and correspondingly its penetrating capability is better than that of the tungsten heavy alloy(WHA) rod. However, the mass erosion manner of the WP/MG rod is different and the erosion is relatively severe, thus its penetrating capability is a little lower compared with that of the WF/MG one. Moreover, the impact velocity and the target strength have significant influences on the ballistic performance of the WP/MG composite rod, whereas the effect of initial nose shape is very little. 展开更多
关键词 TUNGSTEN particle/metallic glass matrix (WP/MG)composite BALLISTIC performance Shear band Self-sharpening Numerical analysis
在线阅读 下载PDF
STUDY ON CONCENTRATING SULFURIC ACID SOLUTION BY MEMBRANE DISTILLATION WITH METAL - PTFE COMPOSITE MEMBRANE 被引量:1
3
作者 Guiqing Zhang Qixiu Zhang +1 位作者 Kanggen Zhou Aiping Luo 《Journal of Central South University》 SCIE EI CAS 1999年第2期95-98,共4页
concentrating sulfuric acid by membrane distillation in a flat sheet direct contact membrane distillation device with a self made metal PTFE composite membrane has been studied. The effect of sulfuric acid concentrati... concentrating sulfuric acid by membrane distillation in a flat sheet direct contact membrane distillation device with a self made metal PTFE composite membrane has been studied. The effect of sulfuric acid concentration of feed, the flowrate and liquor temperature in high temperature side and low temperature side on the flux and separation efficiency is investigated. The stability of this composite membrane is also inspected. The experimental results show that the metal PTFE composite membrane can be used in membrane distillation, and its properties are very stable. It is feasible to concentrate sulfuric acid by membrane distillation with this membrane. 展开更多
关键词 metal PTFE composite MEMBRANE MEMBRANE DISTILLATION sulfuric ACID
在线阅读 下载PDF
Ionic polymer metal composites actuators with enhanced driving performance by incorporating graphene quantum dots 被引量:1
4
作者 YIN Guo-xiao HE Qing-song +2 位作者 YU Min WU Yu-wei XU Xian-rui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1412-1422,共11页
In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,... In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,2.0 wt.%and 4.0 wt.%were fabricated by solution casting,and then IPMCs were manufactured by electroless plating.The water contents and elastic moduli of the hybrid membranes were tested.The morphology characteristics of the hybrid membranes and the IPMCs were observed,and the current,AC impedance,blocking force and displacement of the IPMCs were measured.The results show that the elastic modulus of the hybrid membranes decreases,the water content increases,and the actuation performance of the IPMCs improves significantly after the addition of GQDs.IPMC with 1.0 wt.%GQDs exhibits the best driving property.Compared with the IPMC without GQDs,the working current,ion conductivity,blocking force,and tip displacement increase by 94.67%,311.11%,53.66%,and 66.07%,respectively.These results lay a solid foundation for the preparation of IPMCs with high performance,and further broaden their applications in biomedical devices and bionic robots. 展开更多
关键词 graphene quantum dots hybrid membrane ionic polymer metal composites actuation performance
在线阅读 下载PDF
Heat treatment optimization for tensile properties of 8011 Al/15% SiCp metal matrix composite using response surface methodology 被引量:7
5
作者 V.VEMBU G.GANESAN 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第4期390-395,共6页
In this study,a mathematical model was developed to optimize the heat treatment process for maximum tensile strength and ductility of aluminum(8011) silicon carbide particulate composites.The process parameters are so... In this study,a mathematical model was developed to optimize the heat treatment process for maximum tensile strength and ductility of aluminum(8011) silicon carbide particulate composites.The process parameters are solutionizing time,aging temperature,and aging time.The experiments were performed on an universal testing machine according to centre rotatable design matrix.A mathematical model was developed with the main and interactive effects of the parameters considered.The analysis of variance technique was used to check the adequacy of the developed model.The optimum parameters were obtained for maximum tensile strength.Fractographic examination shows the cracks and dimples on the fractured surfaces of heat-treated specimen. 展开更多
关键词 热处理工艺优化 颗粒复合材料 响应曲面法 拉伸性能 金属基体 万能试验机 开发模型
在线阅读 下载PDF
Mechanical behavior of entangled metallic wire materials-polyurethane interpenetrating composites
6
作者 Xiao-yuan Zheng Zhi-ying Ren +2 位作者 Hong-bai Bai Zhang-bin Wu You-song Guo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期120-136,共17页
Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is pre... Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is presented in this work in order to fabricate composites with enhanced mechanical characteristics.More specifically,entangled metallic wire materials were used as the active matrix,whereas polyurethane was employed as the reinforcement elements.As a result,an entangled metallic wire material-polyurethane composite with high damping and stiffness was prepared by enforcing the vacuum infiltration method.On top of that,the mechanical properties(loss factor,energy consumption,and average stiffness)of the proposed composite materials were characterized by performing dynamic tests,and its fatigue characteristics were verified by the micro-interface bonding,as well as the macro-damage factor.The impact of the density,preloading spacing,loading amplitude,and exciting frequency on the mechanical properties of the composites were also thoroughly analyzed.The extracted results indicate that the mechanical properties of the composites were significantly enhanced than those of the pure materials due to the introduction of interface friction.Moreover,the average stiffness of the composites was about 10 times the respective value of the entangled metallic wire material.Interestingly,a rise in the loading period leads to some failure between the composite interfaces,which reduces the stiffness property but enhances the damping dissipation properties.Finally,a comprehensive dynamic mechanical model of the composites was established,while it was experimentally verified.The proposed composites possess higher damping features,i.e.,stiffness characteristics,and maintain better fatigue characteristics,which can broaden the application range of the composites.In addition,we provide a theoretical and experimental framework for the research and applications in the field of metal matrix composites. 展开更多
关键词 Entangled metallic wire material composites materials Damping property STIFFNESS Fatigue characteristics
在线阅读 下载PDF
Ultrafine and fine particle emission in turning titanium metal matrix composite(Ti-MMC)
7
作者 Seyed Ali NIKNAM Masoud SABERI +3 位作者 Jules KOUAM Ramin HASHEMI Victor SONGMENE Marek BALAZINSKI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1563-1572,共10页
Titanium metal matrix composite(Ti-MMC)has excellent features and capabilities which can be considered a potential candidate to replace commercial titanium and superalloys within an extensive range of products and ind... Titanium metal matrix composite(Ti-MMC)has excellent features and capabilities which can be considered a potential candidate to replace commercial titanium and superalloys within an extensive range of products and industrial sectors.Regardless of the superior features in Ti-MMC,however,referring to several factors including high unit cost and existence of rigid and abrasive ceramic particles in the generated matrices of the work part,the Ti-MMC is grouped as extremely difficult to cut with a poor level of machinability.Furthermore,adequate process parameters for machining Ti-MMCs under several lubrication methods are rarely studied.Therefore,adequate knowledge of this regard is strongly demanded.Among machinability attributes,ultrafine particles(UFPs)and fine particles(FPs)have been selected as the main machinability attributes and the factors leading to minimized emission have been studied.According to experimental observations,despite the type of coating used,the use of higher levels of flow rate led to less UFPs,while no significant effects were observed on UFPs.Under similar cutting conditions,higher levels of FPs were recorded under the use of uncoated inserts.Moreover,cutting speed had no significant influence on UFPs;nevertheless,it significantly affects the FPs despite the type of insert used. 展开更多
关键词 metal matrix composites(MMCs) particle emission dust emission TURNING lubrication mode
在线阅读 下载PDF
Recent advances in catalytic combustion of AP-based composite solid propellants 被引量:20
8
作者 Narendra Yadav Prem Kumar Srivastava Mohan Varma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期1013-1031,共19页
Composite solid propellants(CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust ve... Composite solid propellants(CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust velocity, specific impulse, thrust, burning rate etc., are measured to assess and control the performance of rocket motors. The burn rate of solid propellants has been considered as most vital parameter for design of solid rocket motors to meet specific mission requirements. The burning rate of solid propellants can be tailored by using different constituents, extent of oxidizer loading and its particle size and more commonly by incorporating suitable combustion catalysts. Various metal oxides(MOs),complexes, metal powders and metal alloys have shown positive catalytic behaviour during the combustion of CSPs. These are usually solid-state catalysts that play multiple roles in combustion of CSPs such as reduction in activation energy, enhancement of rate of reaction, modification of sequences in reaction-phase, influence on condensed-phase combustion and participation in combustion process in gas-phase reactions. The application of nanoscale catalysts in CSPs has increased considerably in recent past due to their superior catalytic properties as compared to their bulk-sized counterparts. A large surface-to-volume ratio and quantum size effect of nanocatalysts are considered to be plausible reasons for improving the combustion characteristics of propellants. Several efforts have been made to produce nanoscale combustion catalysts for advanced propellant formulations to improve their energetics. The work done so far is largely scattered. In this review, an effort has been made to introduce various combustion catalysts having at least a metallic entity. Recent developments of nanoscale combustion catalysts with their specific merits are discussed. The combustion chemistry of a typical CSP is briefly discussed for providing a better understanding on role of combustion catalysts in burning rate enhancement. Available information on different types of combustion nanocatalysts is also presented with critical comments. 展开更多
关键词 composite solid propellants Burn rate modifier metallic nano-catalysts Catalytic combustion Thermal decomposition
在线阅读 下载PDF
Fabrication of AA7005/TiB2-B4C surface composite by friction stir processing: Evaluation of ballistic behaviour 被引量:3
9
作者 Nitinkumar Pol Gaurav Verma +1 位作者 R.P.Pandey T.Shanmugasundaram 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第3期363-368,共6页
The present work aims to enhance the ballistic resistance of AA7005 alloy by incorporating the TiB2 and B4C ceramic reinforcement particles. Surface composites with different weight fractions of TiB2 and B4C particles... The present work aims to enhance the ballistic resistance of AA7005 alloy by incorporating the TiB2 and B4C ceramic reinforcement particles. Surface composites with different weight fractions of TiB2 and B4C particles were processed by friction stir processing. Micro-hardness and depth of penetration tests were carried out to evaluate the ballistic properties of the surface composites. The surface hardness of the composite was found to be nearly 70 HV higher than base alloy. The depth of penetration of the steel projectile was 20e26mm in the composites as compared to 37mm in the base alloy. Ballistic mass efficiency factor of the surface composite was found to be 1.6 times higher than base alloy. This is mainly attributed to the dispersion strengthening from the reinforcement particles. 展开更多
关键词 Aluminum ALLOYS metal matrix composite BALLISTIC testing FRICTION STIR processing
在线阅读 下载PDF
Effect of tool plunge depth on reinforcement particles distribution in surface composite fabrication via friction stir processing 被引量:1
10
作者 Sandeep Rathee Sachin Maheshwari +1 位作者 Arshad Noor Siddiquee Manu Srivastava 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第2期86-91,共6页
Aluminium matrix surface composites are gaining alluring role especially in aerospace, defence, and marine industries. Friction stir processing(FSP) is a promising novel solid state technique for surface composites fa... Aluminium matrix surface composites are gaining alluring role especially in aerospace, defence, and marine industries. Friction stir processing(FSP) is a promising novel solid state technique for surface composites fabrication. In this study, AA6061/SiC surface composites were fabricated and the effect of tool plunge depth on pattern of reinforcement particles dispersion in metal matrix was investigated. Six varying tool plunge depths were chosen at constant levels of shoulder diameter and tool tilt angle to observe the exclusive effect of plunge variation. Process parameters chosen for the experimentation are speed of rotation, travel speed and tool tilt angle which were taken as 1400 rpm, 40 mm/min, and 2.5 °respectively. Macro and the microstructural study were performed using stereo zoom and optical microscope respectively. Results reflected that lower plunge depth levels lead to insufficient heat generation and cavity formation towards the stir zone center. On the other hand, higher levels of plunge depth result in ejection of reinforcement particles and even sticking of material to tool shoulder. Thus, an optimal plunge depth is needed in developing defect free surface composites. 展开更多
关键词 metal matrix composites FRICTION STIR processing TOOL plunge DEPTH MICROSTRUCTURAL characterization
在线阅读 下载PDF
Joining of hybrid AA6063-6SiCp-3Grp composite and AISI1030 steel by friction welding
11
作者 N.Rajesh Jesudoss Hynes M.Vivek Prabhu P.Nagaraj Senior 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第5期338-345,共8页
Joining of metals and aluminium hybrid metal matrix composites has significant applications in aviation,ship building and automotive industries. In the present work, investigation is carried out on Friction Welding of... Joining of metals and aluminium hybrid metal matrix composites has significant applications in aviation,ship building and automotive industries. In the present work, investigation is carried out on Friction Welding of AISI 1030 steel and hybrid AA6063-6 SiC_p-3 Gr_pcomposite, that are difficult to weld by fusion welding technique. Silicon carbide and graphite particle reinforced AA6063 matrix hybrid composite was developed successfully using stir casting method and the joining feasibility of AISI1030 steel with AA6063-6 SiC_p-3 Gr_p hybrid composite was tried out by friction stud welding technique. During friction stage of welding process, the particulates(SiC & Graphite) used for reinforcement, tend to increase the viscosity and lead to improper mixing of matrix and reinforcement. This eventually results in lower strength in dissimilar joints. To overcome this difficulty AA1100 interlayer is used while joining hybrid composite to AISI 1030 steel. Experimentation was carried out using Taguchi based design of experiments(DOE) technique. Multiple regression methods were applied to understand the relationship between process parameters of the friction stud welding process. Micro structural examination reveals three separate zones namely fully plasticized zone, partially deformed zone and unaffected base material zone. Ultra fine dynamically recrystallized grains of about 341 nm were observed at the fully plasticized zone. EDX analysis confirms the presence of intermetallic compound Fe_2 Al_5 at the joint interface. According to the experimental analysis using DOE, rotational speed and interlayer sheet thickness contribute about 39% and 36% respectively in determining the impact strength of the welded joints. It is found that joining with 0.5 mm interlayer sheet provides efficient joints. Developed regression model could be used to predict the axial shortening distance and impact strength of the welded joint with reasonable accuracy. 展开更多
关键词 metal MATRIX composite WELDING Mechanical properties SCANNING ELECTRON MICROSCOPY
在线阅读 下载PDF
Modeling mechanical behaviors of composites with various ratios of matrixeinclusion properties using movable cellular automaton method
12
作者 A.Yu.SMOLIN E.V.SHILKO +3 位作者 S.V.ASTAFUROV I.S.KONOVALENKO S.P.BUYAKOVA S.G.PSAKHIE 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第1期18-34,共17页
Two classes of composite materials are considered: classical metaleceramic composites with reinforcing hard inclusions as well as hard ceramics matrix with soft gel inclusions. Movable cellular automaton method is use... Two classes of composite materials are considered: classical metaleceramic composites with reinforcing hard inclusions as well as hard ceramics matrix with soft gel inclusions. Movable cellular automaton method is used for modeling the mechanical behaviors of such different heterogeneous materials. The method is based on particle approach and may be considered as a kind of discrete element method. The main feature of the method is the use of many-body forces of inter-element interaction within the formalism of simply deformable element approximation. It was shown that the strength of reinforcing particles and the width of particle-binder interphase boundaries had determining influence on the service characteristics of metaleceramic composite. In particular, the increasing of strength of carbide inclusions may lead to significant increase in the strength and ultimate strain of composite material. On the example of porous zirconia ceramics it was shown that the change in the mechanical properties of pore surface leads to the corresponding change in effective elastic modulus and strength limit of the ceramic sample. The less is the pore size, the more is this effect. The increase in the elastic properties of pore surface of ceramics may reduce its fracture energy. 展开更多
关键词 compositeS metal CERAMICS ZIRCONIA CERAMICS Gel MODELING Movable cellular AUTOMATA MANY-BODY interaction
在线阅读 下载PDF
Age hardening process modeling and optimization of aluminum alloy A356/Cow horn particulate composite for brake drum application using RSM,ANN and simulated annealing
13
作者 Chidozie Chukwuemeka Nwobi-Okoye Basil Quent Ochieze 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第4期336-345,共10页
Most conventional ceramic based aluminum metal matrix composites(MMCs) are either heavy,costly or combination of both. In order to reduce cost and weight,while at the same time maintaining quality,cow horn particles(C... Most conventional ceramic based aluminum metal matrix composites(MMCs) are either heavy,costly or combination of both. In order to reduce cost and weight,while at the same time maintaining quality,cow horn particles(CHp) was used with aluminum alloy A356 to produce MMC for brake drum application and other engineering uses. The aim of this research is to model the age hardening process of the produced composite using response surface methodology(RSM) and artificial neural network(ANN),and to use the developed ANN as fitness function for a simulated annealing optimization algorithm(SA-NN system) for optimization of age hardening process parameters. The results show that ANN modeled the age hardening data excellently and better than RSM with a correlation coefficient of experimental response with ANN predictions being 0.9921 as against 0.9583 for the RSM. The SA-NN system optimized process parameters were in very close agreement with the experimental values with the maximum relative error of 1.2%,minimum of 0.35% and average of 0.71%. 展开更多
关键词 Artificial neural network Response surface methodology Simulated ANNEALING Age HARDENING metal matrix composite
在线阅读 下载PDF
Reduction behaviour of Odisha Sands Complex,India ilmenite-coke composite pellets
14
作者 D NAYAK N RAY +2 位作者 N DASH S S RATH S K BISWAL 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第6期1678-1690,共13页
Presently,ilmenite concentrates from Odisha Sands Complex at Chhatrapur,India are utilized to produce TiO2 slag by direct smelting in an electric arc furnace.However,the process involves the consumption of excess elec... Presently,ilmenite concentrates from Odisha Sands Complex at Chhatrapur,India are utilized to produce TiO2 slag by direct smelting in an electric arc furnace.However,the process involves the consumption of excess electrical energy and difficulty in handling the arc furnace due to frothing effects.A more efficient process of pre-reducing the ilmenite before smelting has been proposed in the present communication.In particular,studies have been undertaken on the reduction process of ilmenite-coke composite pellets.The difference in the reduction behaviour of raw ilmenite and ilmenite-coke composite pellets has been established and compared with that of the pre-oxidized raw pellets.The effects of various processing parameters like temperature,residence time,and reductant percentage on the metallization of composite pellets in a static bed have been investigated.Metallization of about 90%has been achieved at 1250°C for a reduction period of 360 min with a 4%coke composition.Furthermore,the reduced pellets have been characterized through chemical analysis,optical microscopy,field emission scanning electron microscopy and X-ray diffraction analysis.The reduction behaviour of composite pellets has also been found better than that of pre-oxidized pellets indicating the former to be more efficient. 展开更多
关键词 ILMENITE composite pellet PRE-OXIDATION REDUCTION metalLIZATION
在线阅读 下载PDF
泡沫镍/树脂多孔复合材料的压缩强度和比强度
15
作者 刘培生 程瑜扬 +2 位作者 程伟 陈斌 李翔宇 《材料工程》 北大核心 2025年第3期153-158,共6页
对泡沫镍(平均孔径约为2.7 mm,孔隙率为93.1%)孔棱进行环氧树脂覆层复合,获得孔棱呈复层结构的泡沫镍/树脂多孔复合材料。对所得复合样品进行压缩性能实验,重点分析复合体的机械强度。结果表明:复合样品的压缩强度和比强度均显著高于原... 对泡沫镍(平均孔径约为2.7 mm,孔隙率为93.1%)孔棱进行环氧树脂覆层复合,获得孔棱呈复层结构的泡沫镍/树脂多孔复合材料。对所得复合样品进行压缩性能实验,重点分析复合体的机械强度。结果表明:复合样品的压缩强度和比强度均显著高于原泡沫镍。当泡沫镍(体密度ρr约0.6 g·cm^(-3))施加覆层制成泡沫镍/树脂复合样品(体密度约0.72~0.82 g·cm^(-3))后,其压缩强度从0.75 MPa提高到2.24~2.68 MPa,其对应比强度从1.23 MPa·cm^(3)·g^(-1)提高到3.09~3.27 MPa·cm^(3)·g^(-1)。复合样品的压缩强度与孔隙率符合基于八面体模型理论得出的对应数理关系。根据对应力学模型可知,复合样品整体失效由孔棱芯部优先破坏造成。 展开更多
关键词 多孔材料 泡沫金属 多孔复合材料 泡沫金属复合材料 力学性能 压缩强度
在线阅读 下载PDF
木质纤维素调控液态金属构建多功能复合材料的研究进展
16
作者 李子江 张洁 +6 位作者 李威 徐婷 龙飞鸿 王滢 王朝辉 郭风军 司传领 《中国造纸》 北大核心 2025年第6期11-22,共12页
木质纤维素调控液态金属作为新兴的功能材料,在各种应用中显示出巨大的潜力。木质纤维素中丰富的羟基、羧基等极性基团与液态金属表面形成强化学键,可显著提升界面润湿性和黏附性,同时优化微观结构定向调控能力,为柔性传感、光热转换等... 木质纤维素调控液态金属作为新兴的功能材料,在各种应用中显示出巨大的潜力。木质纤维素中丰富的羟基、羧基等极性基团与液态金属表面形成强化学键,可显著提升界面润湿性和黏附性,同时优化微观结构定向调控能力,为柔性传感、光热转换等功能化应用领域提供创新解决方案。本文系统综述了木质纤维素调控液态金属制备功能材料的最新研究进展,重点分析了液态金属的结构特点,纤维素、木质素等不同木质纤维素组分调控液态金属的功能化策略;探讨了复合材料在柔性电子领域作为柔性传感基底的潜力,及其通过光热响应特性实现能量转换在太阳能界面蒸发等领域的应用,并对未来发展方向进行了展望。 展开更多
关键词 木质纤维素 液态金属 复合材料 储能 光热材料
在线阅读 下载PDF
金属有机骨架复合聚合物电解质的研究进展
17
作者 胡德计 宋恩凤 +2 位作者 张学玲 刘兴江 徐强 《中国有色金属学报》 北大核心 2025年第5期1739-1756,共18页
由于安全和能量密度上的优势,全固态锂金属电池已经成为下一代电池发展的希望。在众多种类的固态电解质中,聚合物电解质具有较高的柔韧性、优良的加工性和与电极良好的界面接触性。但目前,聚合物固态电解质存在离子电导率较低机械强度... 由于安全和能量密度上的优势,全固态锂金属电池已经成为下一代电池发展的希望。在众多种类的固态电解质中,聚合物电解质具有较高的柔韧性、优良的加工性和与电极良好的界面接触性。但目前,聚合物固态电解质存在离子电导率较低机械强度较差的问题。为了提高聚合物电解质(SPE)的性能,向SPE中加入无机填料被认为是一种有效的方法。金属有机框架(MOF)材料具有极高的比表面积、可设计的多孔结构和易于化学调节等优点。将MOF材料引入聚合物基体中,可以提高聚合物固态电解质的离子电导率和机械性能,有利于形成良好的电极/电解质接触界面。本文综述了金属有机框架(MOF)复合聚合物固态电解质的最新研究进展。 展开更多
关键词 金属锂电池 复合聚合物电解质 金属有机骨架 填料 进展
在线阅读 下载PDF
轻质陶瓷复合装甲研究进展
18
作者 陈智勇 徐颖强 +4 位作者 高飞 邓四二 李彬 崔帅帅 秦景 《中国陶瓷》 北大核心 2025年第5期1-10,共10页
轻质防护装甲可有效提升载具的机动灵活性和遭受攻击后的生存能力,已成为装甲车辆等国防军工领域研究的重要课题。由陶瓷面板和纤维背板复合而成的陶瓷复合装甲已代替单一防护材料,成为轻质复合装甲发展的重要趋势,但质量笨重的传统陶... 轻质防护装甲可有效提升载具的机动灵活性和遭受攻击后的生存能力,已成为装甲车辆等国防军工领域研究的重要课题。由陶瓷面板和纤维背板复合而成的陶瓷复合装甲已代替单一防护材料,成为轻质复合装甲发展的重要趋势,但质量笨重的传统陶瓷面板降低了防护装备的机动灵活性,纤维复合材料阻燃性差、遭受攻击后燃烧产生毒烟降低了防护装备和人员的生存能力。围绕防护装甲的轻质、阻燃性能需求,从结构形式、制备工艺、防弹性能评价及抗侵彻机理四个方面,全面综述国内外陶瓷复合装甲的研究进展。为设计出满足轻质、阻燃性能需求的C/C-SiC陶瓷/金属基复合泡沫复合装甲提供理论依据,对拓展陶瓷复合装甲材料的设计思路,提高防护水平具有重要意义。 展开更多
关键词 陶瓷 防弹材料 复合装甲 防弹机理 C/C-SiC陶瓷 金属基复合材料
在线阅读 下载PDF
基于纳米压痕的B_(4)C/7075Al复合材料界面本构方程反演分析
19
作者 薛克敏 王可成 +3 位作者 代良伟 田辙环 石文超 李萍 《塑性工程学报》 北大核心 2025年第4期131-140,共10页
为研究热处理后高压扭转B_(4)C/7075Al复合材料界面的介观尺度力学性能,利用纳米压痕实验获取复合材料界面的载荷-位移曲线,提出了一种结合量纲法和有限元反演分析法来确定复合材料界面弹塑性本构关系的逆向分析方法。并基于获得的弹塑... 为研究热处理后高压扭转B_(4)C/7075Al复合材料界面的介观尺度力学性能,利用纳米压痕实验获取复合材料界面的载荷-位移曲线,提出了一种结合量纲法和有限元反演分析法来确定复合材料界面弹塑性本构关系的逆向分析方法。并基于获得的弹塑性本构关系开展有限元模拟,将模拟结果与实验结果进行对比。结果表明:热处理后高压扭转B_(4)C/7075Al复合材料界面的弹性模量、应变硬化指数和屈服强度分别为117.44 GPa、0.296和978 MPa。模拟得到的弹性模量和纳米硬度与实验值的相对误差分别为5.8%和2.9%,证实了基于纳米压痕反演分析B_(4)C/7075Al复合材料界面本构方程的可行性。 展开更多
关键词 金属基复合材料 高压扭转 纳米压痕 反演分析
在线阅读 下载PDF
复合型金属橡胶的静力学模型研究
20
作者 余慧杰 侯伟平 +1 位作者 陈成 倪维宇 《机械强度》 北大核心 2025年第7期152-158,共7页
在静态力学试验的基础上,建立一种复合型金属橡胶(Composite-Metal Rubber,C-MR)的理论模型。采用一种新型制备工艺制备C-MR,对其进行静态力学试验。结合编织型金属橡胶(Wove-Metal Rubber,W-MR)和缠绕型金属橡胶(Tangled-Metal Rubber,... 在静态力学试验的基础上,建立一种复合型金属橡胶(Composite-Metal Rubber,C-MR)的理论模型。采用一种新型制备工艺制备C-MR,对其进行静态力学试验。结合编织型金属橡胶(Wove-Metal Rubber,W-MR)和缠绕型金属橡胶(Tangled-Metal Rubber,T-MR)的静力学模型,建立了C-MR的力学模型,并研究了不同编缠比对C-MR力学特性的影响。试验数据和理论模型对比结果表明,该理论模型能够有效预测C-MR的力学特性。并且发现,编缠比对C-MR的力学特性有显著影响,编缠比越大,C-MR的刚度和阻尼特性越大。研究结论可为C-MR的制备和应用提供理论支持。 展开更多
关键词 复合型金属橡胶 静态力学试验 力学特性 力学模型
在线阅读 下载PDF
上一页 1 2 112 下一页 到第
使用帮助 返回顶部