A quick and accurate extraction of dominant colors of background images is the basis of adaptive camouflage design.This paper proposes a Color Image Quick Fuzzy C-Means(CIQFCM)clustering algorithm based on clustering ...A quick and accurate extraction of dominant colors of background images is the basis of adaptive camouflage design.This paper proposes a Color Image Quick Fuzzy C-Means(CIQFCM)clustering algorithm based on clustering spatial mapping.First,the clustering sample space was mapped from the image pixels to the quantized color space,and several methods were adopted to compress the amount of clustering samples.Then,an improved pedigree clustering algorithm was applied to obtain the initial class centers.Finally,CIQFCM clustering algorithm was used for quick extraction of dominant colors of background image.After theoretical analysis of the effect and efficiency of the CIQFCM algorithm,several experiments were carried out to discuss the selection of proper quantization intervals and to verify the effect and efficiency of the CIQFCM algorithm.The results indicated that the value of quantization intervals should be set to 4,and the proposed algorithm could improve the clustering efficiency while maintaining the clustering effect.In addition,as the image size increased from 128×128 to 1024×1024,the efficiency improvement of CIQFCM algorithm was increased from 6.44 times to 36.42 times,which demonstrated the significant advantage of CIQFCM algorithm in dominant colors extraction of large-size images.展开更多
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien...Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.展开更多
Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical...Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical clustering were investigated. Both theoretical analysis and detailed experimental results were given. It is shown that a distance function greatly affects clustering results and can be used to detect the outlier of a cluster by the comparison of such different results and give the shape information of clusters. In practice situation, it is suggested to use different distance function separately, compare the clustering results and pick out the 搒wing points? And such points may leak out more information for data analysts.展开更多
Chosen-message pair Simple Power Analysis (SPA) attacks were proposed by Boer, Yen and Homma, and are attack methods based on searches for collisions of modular multiplication. However, searching for collisions is dif...Chosen-message pair Simple Power Analysis (SPA) attacks were proposed by Boer, Yen and Homma, and are attack methods based on searches for collisions of modular multiplication. However, searching for collisions is difficult in real environments. To circumvent this problem, we propose the Simple Power Clustering Attack (SPCA), which can automatically identify the modular multiplication collision. The insignificant effects of collision attacks were validated in an Application Specific Integrated Circuit (ASIC) environment. After treatment with SPCA, the automatic secret key recognition rate increased to 99%.展开更多
Clustering is one of the most widely used data mining techniques that can be used to create homogeneous clusters.K-means is one of the popular clustering algorithms that,despite its inherent simplicity,has also some m...Clustering is one of the most widely used data mining techniques that can be used to create homogeneous clusters.K-means is one of the popular clustering algorithms that,despite its inherent simplicity,has also some major problems.One way to resolve these problems and improve the k-means algorithm is the use of evolutionary algorithms in clustering.In this study,the Imperialist Competitive Algorithm(ICA) is developed and then used in the clustering process.Clustering of IRIS,Wine and CMC datasets using developed ICA and comparing them with the results of clustering by the original ICA,GA and PSO algorithms,demonstrate the improvement of Imperialist competitive algorithm.展开更多
The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind powe...The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind power at each moment;however,they ignore the daily output characteristics and are unable to consider both modeling accuracy and efficiency.To resolve this problem,a wind power time series simulation model based on typical daily output processes and Markov algorithm is proposed.First,a typical daily output process classification method based on time series similarity and modified K-means clustering algorithm is presented.Second,considering the typical daily output processes as status variables,a wind power time series simulation model based on Markov algorithm is constructed.Finally,a case is analyzed based on the measured data of a wind farm in China.The proposed model is then compared with traditional methods to verify its effectiveness and applicability.The comparison results indicate that the statistical characteristics,probability distributions,and autocorrelation characteristics of the wind power time series generated by the proposed model are better than those of the traditional methods.Moreover,modeling efficiency considerably improves.展开更多
A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also fa...A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also facilitates the detection of dynamic and hollowed-out obstacles. Essentially using this method, an improved clustering algorithm based on fast search and discovery of density peaks (CBFD) is presented to extract various obstacles in the environment map. By comparing with other cluster algorithms, CBFD can obtain a favorable number of clusterings automatically. Furthermore, the experiments show that CBFD is better and more robust in functionality and performance than the K-means and iterative self-organizing data analysis techniques algorithm (ISODATA).展开更多
Measurement-based one-way quantum computation, which uses cluster states as resources, provides an efficient model to perforrn computation. However, few of the continuous variable (CV) quantum algorithms and classic...Measurement-based one-way quantum computation, which uses cluster states as resources, provides an efficient model to perforrn computation. However, few of the continuous variable (CV) quantum algorithms and classical algorithms based on one-way quantum computation were proposed. In this work, we propose a method to implement the classical Hadamard transform algorithm utilizing the CV cluster state. Compared with classical computation, only half operations are required when it is operated in the one-way CV quantum computer. As an example, we present a concrete scheme of four-mode classical Hadamard transform algorithm with a four-partite CV cluster state. This method connects the quantum computer and the classical algorithms, which shows the feasibility of running classical algorithms in a quantum computer efficiently.展开更多
In LEO(Low Earth Orbit)satellite communication system,the orbit height of the satellite is low,the transmission delay is short,the path loss is small,and the frequency multiplexing is more effective.However,it is an u...In LEO(Low Earth Orbit)satellite communication system,the orbit height of the satellite is low,the transmission delay is short,the path loss is small,and the frequency multiplexing is more effective.However,it is an unavoidable technical problem of the significant Doppler effect caused by the interference between satellite networks and the high-speed movement of the satellite relative to the ground.In order to improve the target detection efficiency and system security of LEO satellite communication system,blind separation technology is an effective method to process the collision signals received by satellites.Because of the signal has good sparsity in Delay-Doppler domain,in order to improve the blind separation performance of LEO satellite communication system,orthogonal Time-Frequency space(OTFS)modulation is used to convert the sampled signal to Delay-Doppler domain.DBSCAN clustering algorithm is used to classify the sparse signal,so as to separate the original mixed signal.Finally,the simulation results show that the method has a good separation effect,and can significantly improve the detection efficiency of system targets and the security of LEO satellite communication system network.展开更多
Purpose: This study aims to build an automatic survey generation tool, named CitationAS, based on citation content as represented by the set of citing sentences in the original articles.Design/methodology/approach: ...Purpose: This study aims to build an automatic survey generation tool, named CitationAS, based on citation content as represented by the set of citing sentences in the original articles.Design/methodology/approach: Firstly, we apply LDA to analyse topic distribution of citation content. Secondly, in CitationAS, we use bisecting K-means, Lingo and STC to cluster retrieved citation content. Then Word2Vec, Word Net and combination of them are applied to generate cluster labels. Next, we employ TF-IDF, MMR, as well as considering sentence location information, to extract important sentences, which are used to generate surveys. Finally, we adopt manual evaluation for the generated surveys.Findings: In experiments, we choose 20 high-frequency phrases as search terms. Results show that Lingo-Word2Vec, STC-Word Net and bisecting K-means-Word2Vec have better clustering effects. In 5 points evaluation system, survey quality scores obtained by designing methods are close to 3, indicating surveys are within acceptable limits. When considering sentence location information, survey quality will be improved. Combination of Lingo, Word2Vec, TF-IDF or MMR can acquire higher survey quality.Research limitations: The manual evaluation method may have a certain subjectivity. We use a simple linear function to combine Word2Vec and Word Net that may not bring out their strengths. The generated surveys may not contain some newly created knowledge of some articles which may concentrate on sentences with no citing.Practical implications: CitationAS tool can automatically generate a comprehensive, detailed and accurate survey according to user’s search terms. It can also help researchers learn about research status in a certain field.Originality/value: Citaiton AS tool is of practicability. It merges cluster labels from semantic level to improve clustering results. The tool also considers sentence location information when calculating sentence score by TF-IDF and MMR.展开更多
The classification of low permeability-tight reservoirs is the premise of development. The deep reservoir of Shahejie 3 member contains rich low permeability-tight reserves, but the strong heterogeneity and complex mi...The classification of low permeability-tight reservoirs is the premise of development. The deep reservoir of Shahejie 3 member contains rich low permeability-tight reserves, but the strong heterogeneity and complex micro pore structure make the main controlling factors subjective and the classification boundaries unclear. Therefore, a new indicator considering the interaction between fluid and rock named Threshold Flow Zone Indicator(TFZI) is proposed, it can be used as the main sequence of correlation analysis to screen the main controlling factors, and the clustering algorithm is optimized combined with probability distribution to determine the classification boundaries. The sorting coefficient, main throat radius, movable fluid saturation and displacement pressure are screened as the representative parameters for the following four key aspects: rock composition, microstructure, flow capacity and the interaction between rock and fluid. Compared with the traditional probability distribution and clustering algorithm, the boundary of the optimized clustering algorithm proposed in this paper is more accurate.The classification results are consistent with sedimentary facies, oil levels and oil production intensity.This method provides an important basis for the development of low permeability-tight reservoirs.展开更多
To guarantee the accuracy and real-time of the 3D reconstruction method for outdoor scene,an algorithm based on region segmentation and matching was proposed.Firstly,on the basis of morphological gradient information,...To guarantee the accuracy and real-time of the 3D reconstruction method for outdoor scene,an algorithm based on region segmentation and matching was proposed.Firstly,on the basis of morphological gradient information,obtained by comparing color weight gradient images and proposing a multi-threshold segmentation,scene contour features were extracted by a watershed algorithm and a fuzzy c-means clustering algorithm.Secondly,to reduce the search area,increase the correct matching ratio and accelerate the matching speed,the region constraint was established according to a region's local position,area and gray characteristics,the edge pixel constraint was established according to the epipolar constraint and the continuity constraint.Finally,by using the stereo matching edge pixel pairs,their 3D coordinates were estimated according to the binocular stereo vision imaging model.Experimental results show that the proposed method can yield a high stereo matching ratio and reconstruct a 3D scene quickly and efficiently.展开更多
Pipeline integrity is a cornerstone of the operation of many industrial systems, and maintaining pipeline integrity is essential for preventing economic losses and ecological damage caused by oil and gas leaks. Based ...Pipeline integrity is a cornerstone of the operation of many industrial systems, and maintaining pipeline integrity is essential for preventing economic losses and ecological damage caused by oil and gas leaks. Based on integritymanagement data published by the US Pipeline and Hazardous Materials Safety Administration, this study applied the k-means clustering and data envelopment analysis(DEA) methods to both explore the characteristics of pipeline-integrity management and evaluate its efficiency. The k-means clustering algorithm was found to be scientifically valid for classifying pipeline companies as either low-, medium-, or high-difficulty companies according to their integrity-management requirements. Regardless of a pipeline company's classification, equipment failure was found to be the main cause of pipeline failure. In-line inspection corrosion and dent tools were the two most-used tools for pipeline inspection. Among the types of repair, 180-day condition repairs were a key concern for pipeline companies. The results of the DEA analysis indicate that only three out of 34 companies were deemed to be DEA-effective. To improve the effectiveness of pipeline integrity management, we propose targeted directions and scales of improvement for non-DEA-effective companies.展开更多
The increasing trend towards independent fruit packaging demands a high appearance quality of individually packed fruits.In this paper,we propose an improved YOLOv5-based model,YOLO-Banana,to effectively grade banana ...The increasing trend towards independent fruit packaging demands a high appearance quality of individually packed fruits.In this paper,we propose an improved YOLOv5-based model,YOLO-Banana,to effectively grade banana appearance quality based on the number of banana defect points.Due to the minor and dense defects on the surface of bananas,existing detection algorithms have poor detection results and high missing rates.To address this,we propose a densitybased spatial clustering of applications with noise(DBSCAN)and K-means fusion clustering method that utilizes refined anchor points to obtain better initial anchor values,thereby enhancing the network’s recognition accuracy.Moreover,the optimized progressive aggregated network(PANet)enables better multi-level feature fusion.Additionally,the non-maximum suppression function is replaced with a weighted non-maximum suppression(weighted NMS)function based on distance intersection over union(DIoU).Experimental results show that the model’s accuracy is improved by 2.3%compared to the original YOLOv5 network model,thereby effectively grading the banana appearance quality.展开更多
HTTP-flooding attack disables the victimized web server by sending a large number of HTTP Get requests.Recent research tends to detect HTTP-flooding with the anomaly-based approaches,which detect the HTTP-flooding by ...HTTP-flooding attack disables the victimized web server by sending a large number of HTTP Get requests.Recent research tends to detect HTTP-flooding with the anomaly-based approaches,which detect the HTTP-flooding by modeling the behavior of normal web surfers.However,most of the existing anomaly-based detection approaches usually cannot filter the web-crawling traces from unknown searching bots mixed in normal web browsing logs.These web-crawling traces can bias the base-line profile of anomaly-based schemes in their training phase,and further degrade their detection performance.This paper proposes a novel web-crawling tracestolerated method to build baseline profile,and designs a new anomaly-based HTTP-flooding detection scheme(abbr.HTTP-sCAN).The simulation results show that HTTP-sCAN is immune to the interferences of unknown webcrawling traces,and can detect all HTTPflooding attacks.展开更多
文摘A quick and accurate extraction of dominant colors of background images is the basis of adaptive camouflage design.This paper proposes a Color Image Quick Fuzzy C-Means(CIQFCM)clustering algorithm based on clustering spatial mapping.First,the clustering sample space was mapped from the image pixels to the quantized color space,and several methods were adopted to compress the amount of clustering samples.Then,an improved pedigree clustering algorithm was applied to obtain the initial class centers.Finally,CIQFCM clustering algorithm was used for quick extraction of dominant colors of background image.After theoretical analysis of the effect and efficiency of the CIQFCM algorithm,several experiments were carried out to discuss the selection of proper quantization intervals and to verify the effect and efficiency of the CIQFCM algorithm.The results indicated that the value of quantization intervals should be set to 4,and the proposed algorithm could improve the clustering efficiency while maintaining the clustering effect.In addition,as the image size increased from 128×128 to 1024×1024,the efficiency improvement of CIQFCM algorithm was increased from 6.44 times to 36.42 times,which demonstrated the significant advantage of CIQFCM algorithm in dominant colors extraction of large-size images.
文摘Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.
文摘Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical clustering were investigated. Both theoretical analysis and detailed experimental results were given. It is shown that a distance function greatly affects clustering results and can be used to detect the outlier of a cluster by the comparison of such different results and give the shape information of clusters. In practice situation, it is suggested to use different distance function separately, compare the clustering results and pick out the 搒wing points? And such points may leak out more information for data analysts.
基金supported in part by the National Natural Science Foundation of China under Grant No. 60873216Scientific and Technological Research Priority Projects of Sichuan Province under Grant No. 2012GZ0017Basic Research of Application Fund Project of Sichuan Province under Grant No. 2011JY0100
文摘Chosen-message pair Simple Power Analysis (SPA) attacks were proposed by Boer, Yen and Homma, and are attack methods based on searches for collisions of modular multiplication. However, searching for collisions is difficult in real environments. To circumvent this problem, we propose the Simple Power Clustering Attack (SPCA), which can automatically identify the modular multiplication collision. The insignificant effects of collision attacks were validated in an Application Specific Integrated Circuit (ASIC) environment. After treatment with SPCA, the automatic secret key recognition rate increased to 99%.
文摘Clustering is one of the most widely used data mining techniques that can be used to create homogeneous clusters.K-means is one of the popular clustering algorithms that,despite its inherent simplicity,has also some major problems.One way to resolve these problems and improve the k-means algorithm is the use of evolutionary algorithms in clustering.In this study,the Imperialist Competitive Algorithm(ICA) is developed and then used in the clustering process.Clustering of IRIS,Wine and CMC datasets using developed ICA and comparing them with the results of clustering by the original ICA,GA and PSO algorithms,demonstrate the improvement of Imperialist competitive algorithm.
基金supported by the China Datang Corporation project“Study on the performance improvement scheme of in-service wind farms”,the Fundamental Research Funds for the Central Universities(2020MS021)the Foundation of State Key Laboratory“Real-time prediction of offshore wind power and load reduction control method”(LAPS2020-07).
文摘The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind power at each moment;however,they ignore the daily output characteristics and are unable to consider both modeling accuracy and efficiency.To resolve this problem,a wind power time series simulation model based on typical daily output processes and Markov algorithm is proposed.First,a typical daily output process classification method based on time series similarity and modified K-means clustering algorithm is presented.Second,considering the typical daily output processes as status variables,a wind power time series simulation model based on Markov algorithm is constructed.Finally,a case is analyzed based on the measured data of a wind farm in China.The proposed model is then compared with traditional methods to verify its effectiveness and applicability.The comparison results indicate that the statistical characteristics,probability distributions,and autocorrelation characteristics of the wind power time series generated by the proposed model are better than those of the traditional methods.Moreover,modeling efficiency considerably improves.
基金Supported by the National Natural Science Foundation of China(61103157)
文摘A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also facilitates the detection of dynamic and hollowed-out obstacles. Essentially using this method, an improved clustering algorithm based on fast search and discovery of density peaks (CBFD) is presented to extract various obstacles in the environment map. By comparing with other cluster algorithms, CBFD can obtain a favorable number of clusterings automatically. Furthermore, the experiments show that CBFD is better and more robust in functionality and performance than the K-means and iterative self-organizing data analysis techniques algorithm (ISODATA).
基金Supported by the National Natural Science Foundation of China under Grant Nos 11504024,61502041,61602045 and 61602046the National Key Research and Development Program of China under Grant No 2016YFA0302600
文摘Measurement-based one-way quantum computation, which uses cluster states as resources, provides an efficient model to perforrn computation. However, few of the continuous variable (CV) quantum algorithms and classical algorithms based on one-way quantum computation were proposed. In this work, we propose a method to implement the classical Hadamard transform algorithm utilizing the CV cluster state. Compared with classical computation, only half operations are required when it is operated in the one-way CV quantum computer. As an example, we present a concrete scheme of four-mode classical Hadamard transform algorithm with a four-partite CV cluster state. This method connects the quantum computer and the classical algorithms, which shows the feasibility of running classical algorithms in a quantum computer efficiently.
基金fully supported by Natural Science Foundation of China Project (61871422)(62171390)Science and Technology Program of Sichuan Province (2020YFH0071)the Fundamental Research Funds for the Central Universities of Southwest Minzu University (ZYN2022032)
文摘In LEO(Low Earth Orbit)satellite communication system,the orbit height of the satellite is low,the transmission delay is short,the path loss is small,and the frequency multiplexing is more effective.However,it is an unavoidable technical problem of the significant Doppler effect caused by the interference between satellite networks and the high-speed movement of the satellite relative to the ground.In order to improve the target detection efficiency and system security of LEO satellite communication system,blind separation technology is an effective method to process the collision signals received by satellites.Because of the signal has good sparsity in Delay-Doppler domain,in order to improve the blind separation performance of LEO satellite communication system,orthogonal Time-Frequency space(OTFS)modulation is used to convert the sampled signal to Delay-Doppler domain.DBSCAN clustering algorithm is used to classify the sparse signal,so as to separate the original mixed signal.Finally,the simulation results show that the method has a good separation effect,and can significantly improve the detection efficiency of system targets and the security of LEO satellite communication system network.
基金supported by Major Projects of National Social Science Fund (No. 17ZDA291)Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University) (No. MJUKF201704)Qing Lan Project
文摘Purpose: This study aims to build an automatic survey generation tool, named CitationAS, based on citation content as represented by the set of citing sentences in the original articles.Design/methodology/approach: Firstly, we apply LDA to analyse topic distribution of citation content. Secondly, in CitationAS, we use bisecting K-means, Lingo and STC to cluster retrieved citation content. Then Word2Vec, Word Net and combination of them are applied to generate cluster labels. Next, we employ TF-IDF, MMR, as well as considering sentence location information, to extract important sentences, which are used to generate surveys. Finally, we adopt manual evaluation for the generated surveys.Findings: In experiments, we choose 20 high-frequency phrases as search terms. Results show that Lingo-Word2Vec, STC-Word Net and bisecting K-means-Word2Vec have better clustering effects. In 5 points evaluation system, survey quality scores obtained by designing methods are close to 3, indicating surveys are within acceptable limits. When considering sentence location information, survey quality will be improved. Combination of Lingo, Word2Vec, TF-IDF or MMR can acquire higher survey quality.Research limitations: The manual evaluation method may have a certain subjectivity. We use a simple linear function to combine Word2Vec and Word Net that may not bring out their strengths. The generated surveys may not contain some newly created knowledge of some articles which may concentrate on sentences with no citing.Practical implications: CitationAS tool can automatically generate a comprehensive, detailed and accurate survey according to user’s search terms. It can also help researchers learn about research status in a certain field.Originality/value: Citaiton AS tool is of practicability. It merges cluster labels from semantic level to improve clustering results. The tool also considers sentence location information when calculating sentence score by TF-IDF and MMR.
基金supported by China Natural Science Foundation(Grant No.51704303)Beijing Natural Science Foundation(Grant No.3173044)。
文摘The classification of low permeability-tight reservoirs is the premise of development. The deep reservoir of Shahejie 3 member contains rich low permeability-tight reserves, but the strong heterogeneity and complex micro pore structure make the main controlling factors subjective and the classification boundaries unclear. Therefore, a new indicator considering the interaction between fluid and rock named Threshold Flow Zone Indicator(TFZI) is proposed, it can be used as the main sequence of correlation analysis to screen the main controlling factors, and the clustering algorithm is optimized combined with probability distribution to determine the classification boundaries. The sorting coefficient, main throat radius, movable fluid saturation and displacement pressure are screened as the representative parameters for the following four key aspects: rock composition, microstructure, flow capacity and the interaction between rock and fluid. Compared with the traditional probability distribution and clustering algorithm, the boundary of the optimized clustering algorithm proposed in this paper is more accurate.The classification results are consistent with sedimentary facies, oil levels and oil production intensity.This method provides an important basis for the development of low permeability-tight reservoirs.
基金Supported by the Ministerial Level Advanced Research Foundation(40401060305)
文摘To guarantee the accuracy and real-time of the 3D reconstruction method for outdoor scene,an algorithm based on region segmentation and matching was proposed.Firstly,on the basis of morphological gradient information,obtained by comparing color weight gradient images and proposing a multi-threshold segmentation,scene contour features were extracted by a watershed algorithm and a fuzzy c-means clustering algorithm.Secondly,to reduce the search area,increase the correct matching ratio and accelerate the matching speed,the region constraint was established according to a region's local position,area and gray characteristics,the edge pixel constraint was established according to the epipolar constraint and the continuity constraint.Finally,by using the stereo matching edge pixel pairs,their 3D coordinates were estimated according to the binocular stereo vision imaging model.Experimental results show that the proposed method can yield a high stereo matching ratio and reconstruct a 3D scene quickly and efficiently.
基金funded by the National Natural Science Foundation of China (Grant No. 71871018)。
文摘Pipeline integrity is a cornerstone of the operation of many industrial systems, and maintaining pipeline integrity is essential for preventing economic losses and ecological damage caused by oil and gas leaks. Based on integritymanagement data published by the US Pipeline and Hazardous Materials Safety Administration, this study applied the k-means clustering and data envelopment analysis(DEA) methods to both explore the characteristics of pipeline-integrity management and evaluate its efficiency. The k-means clustering algorithm was found to be scientifically valid for classifying pipeline companies as either low-, medium-, or high-difficulty companies according to their integrity-management requirements. Regardless of a pipeline company's classification, equipment failure was found to be the main cause of pipeline failure. In-line inspection corrosion and dent tools were the two most-used tools for pipeline inspection. Among the types of repair, 180-day condition repairs were a key concern for pipeline companies. The results of the DEA analysis indicate that only three out of 34 companies were deemed to be DEA-effective. To improve the effectiveness of pipeline integrity management, we propose targeted directions and scales of improvement for non-DEA-effective companies.
基金supported by the Beijing Science Foundation(No.9232005)the Beijing Municipal Philosophy and Social Science Foundation of China(No.19GLB036)the Beijing Science and Technology Project(No.Z221100005822014)。
文摘The increasing trend towards independent fruit packaging demands a high appearance quality of individually packed fruits.In this paper,we propose an improved YOLOv5-based model,YOLO-Banana,to effectively grade banana appearance quality based on the number of banana defect points.Due to the minor and dense defects on the surface of bananas,existing detection algorithms have poor detection results and high missing rates.To address this,we propose a densitybased spatial clustering of applications with noise(DBSCAN)and K-means fusion clustering method that utilizes refined anchor points to obtain better initial anchor values,thereby enhancing the network’s recognition accuracy.Moreover,the optimized progressive aggregated network(PANet)enables better multi-level feature fusion.Additionally,the non-maximum suppression function is replaced with a weighted non-maximum suppression(weighted NMS)function based on distance intersection over union(DIoU).Experimental results show that the model’s accuracy is improved by 2.3%compared to the original YOLOv5 network model,thereby effectively grading the banana appearance quality.
基金supported by National Key Basic Research Program of China(973 program)under Grant No.2012CB315905National Natural Science Foundation of China under grants 61172048,61100184,60932005 and 61201128the Fundamental Research Funds for the Central Universities under Grant No ZYGX2011J007
文摘HTTP-flooding attack disables the victimized web server by sending a large number of HTTP Get requests.Recent research tends to detect HTTP-flooding with the anomaly-based approaches,which detect the HTTP-flooding by modeling the behavior of normal web surfers.However,most of the existing anomaly-based detection approaches usually cannot filter the web-crawling traces from unknown searching bots mixed in normal web browsing logs.These web-crawling traces can bias the base-line profile of anomaly-based schemes in their training phase,and further degrade their detection performance.This paper proposes a novel web-crawling tracestolerated method to build baseline profile,and designs a new anomaly-based HTTP-flooding detection scheme(abbr.HTTP-sCAN).The simulation results show that HTTP-sCAN is immune to the interferences of unknown webcrawling traces,and can detect all HTTPflooding attacks.