期刊文献+
共找到734篇文章
< 1 2 37 >
每页显示 20 50 100
Decision tree support vector machine based on genetic algorithm for multi-class classification 被引量:17
1
作者 Huanhuan Chen Qiang Wang Yi Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期322-326,共5页
To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of... To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods. 展开更多
关键词 support vector machine (SVM) decision tree GENETICALGORITHM classification.
在线阅读 下载PDF
基于成长型CART的综合能源系统安全调度方法研究
2
作者 李鑫 庞超 王智爽 《传感器与微系统》 北大核心 2025年第2期53-56,共4页
随着天然气网络与电网耦合性的逐步提高,电力和天然气综合能源系统的运行更易受到多重因素的影响。提出了一种基于成长型分类与回归树(CART)的电力和天然气综合能源系统安全调度方法。首先,构建了基于成长型分类与回归树的安全域划分模... 随着天然气网络与电网耦合性的逐步提高,电力和天然气综合能源系统的运行更易受到多重因素的影响。提出了一种基于成长型分类与回归树(CART)的电力和天然气综合能源系统安全调度方法。首先,构建了基于成长型分类与回归树的安全域划分模型,根据CART确定安全域和可控变量边界;其次,提出了电-气综合能源系统的安全调度策略,构建了基于安全约束的功率流和天然气流优化模型,CART规则用于描述安全域的约束,对最优发电量和产气量进行预防性调整;最后,本文以15节点天然气网络和IEEE118节点电网测试系统为例,验证了所提出的安全调度方法在恢复安全运行方面的效果。 展开更多
关键词 综合能源系统 安全调度 成长型分类与回归树 安全域
在线阅读 下载PDF
Ordinal Decision Trees
3
作者 HU Qinghua CHE Xunjian 《浙江海洋学院学报(自然科学版)》 CAS 2010年第5期450-461,共12页
In many decision making tasks,the features and decision are ordinal.Several ordinal classification learning algorithms have been developed in recent years,it is shown that these algorithms are sensitive to noisy sampl... In many decision making tasks,the features and decision are ordinal.Several ordinal classification learning algorithms have been developed in recent years,it is shown that these algorithms are sensitive to noisy samples and do not work in real-world applications.In this work,we propose a new measure of feature quality, called rank mutual information.Then,we design an ordinal decision tree(REOT) construction technique based on rank mutual information.The theoretic and experimental analysis shows that the proposed algorithm is effective. 展开更多
关键词 ordinal classification rank entropy rank mutual information decision tree
在线阅读 下载PDF
一种基于ExtraTrees的差分隐私保护算法 被引量:6
4
作者 李杨 陈子彬 谢光强 《计算机工程》 CAS CSCD 北大核心 2020年第2期134-140,共7页
为在同等隐私保护级别下提高模型的预测准确率并降低误差,提出一种基于ExtraTrees的差分隐私保护算法DiffPETs。在决策树生成过程中,根据不同的准则计算出各特征的结果值,利用指数机制选择得分最高的特征,通过拉普拉斯机制在叶子节点上... 为在同等隐私保护级别下提高模型的预测准确率并降低误差,提出一种基于ExtraTrees的差分隐私保护算法DiffPETs。在决策树生成过程中,根据不同的准则计算出各特征的结果值,利用指数机制选择得分最高的特征,通过拉普拉斯机制在叶子节点上进行加噪,使算法能够提供ε-差分隐私保护。将DiffPETs算法应用于决策树分类和回归分析中,对于分类树,选择基尼指数作为指数机制的可用性函数并给出基尼指数的敏感度,在回归树上,将方差作为指数机制的可用性函数并给出方差的敏感度。实验结果表明,与决策树差分隐私分类和回归算法相比,DiffPETs算法能有效降低预测误差。 展开更多
关键词 差分隐私 Extratrees算法 分类 回归分析 决策树
在线阅读 下载PDF
基于CART决策树的分布式数据离群点检测算法 被引量:3
5
作者 朱华 乔勇进 董国钢 《现代电子技术》 北大核心 2024年第16期157-162,共6页
在分布式计算环境中,离群点通常表示数据中的异常情况,例如故障、欺诈、攻击等。通过检测分布式数据的离群点,可以对这些异常数据进行集中处理,保护系统和数据的安全。而进行离群点检测时,不仅要考虑数据的规模和复杂性,还要在分布式环... 在分布式计算环境中,离群点通常表示数据中的异常情况,例如故障、欺诈、攻击等。通过检测分布式数据的离群点,可以对这些异常数据进行集中处理,保护系统和数据的安全。而进行离群点检测时,不仅要考虑数据的规模和复杂性,还要在分布式环境下高效地发现离群点。因此,提出一种基于CART决策树的分布式数据离群点检测算法。在构建CART决策树时,使用类间中心距离作为分裂准则,根据分离类别对训练数据进行分类,从而确定数据的类型。在上述基础上,考虑到离群点的分布模式与其周围数据对象不同,使用空间局部偏离因子(SLDF)对空间内各个数据对象之间的离群程度展开度量,同时在高维空间内展开网格划分,引入SLDF算法检测剩余离群点集,最终实现分布式数据离群点检测。实验结果表明,所提方法的离散点检测错误率在0.010以内,可以更加精准地实现分布式数据离群点检测,具有良好的检测性能。 展开更多
关键词 cart决策树 分布式数据 离群点检测 类间距离 数据分类 空间局部偏离因子
在线阅读 下载PDF
一种基于FP_Tree算法的决策树构造方法 被引量:3
6
作者 徐林章 赵强 张艳宁 《计算机工程》 CAS CSCD 北大核心 2009年第8期53-55,共3页
针对大规模训练元组决策树构造效率较低的问题,提出一种改进的决策树构造方法。该方法利用FP_Tree算法,比采用经典Apriori算法节省了更多内存开销。使用FP_Tree路径替代经典算法中训练元组的分裂计算,得到与原算法相同的决策树模型。实... 针对大规模训练元组决策树构造效率较低的问题,提出一种改进的决策树构造方法。该方法利用FP_Tree算法,比采用经典Apriori算法节省了更多内存开销。使用FP_Tree路径替代经典算法中训练元组的分裂计算,得到与原算法相同的决策树模型。实验结果证明,改进后的方法具有良好性能。 展开更多
关键词 决策树 FP_tree算法 分类
在线阅读 下载PDF
基于Morlet小波与CART决策树的滚动轴承故障诊断方法 被引量:4
7
作者 刘俊利 缪炳荣 +2 位作者 张盈 李永健 黄仲 《机械强度》 CAS CSCD 北大核心 2024年第1期1-8,共8页
针对滚动轴承故障诊断过程中样本处理、故障识别等技术问题,提出一种基于Morlet小波和分类回归树(Classification and Regression Tree,CART)的滚动轴承故障诊断方法。首先,利用Morlet小波分析方法和移动窗方法对轴承振动信号进行样本... 针对滚动轴承故障诊断过程中样本处理、故障识别等技术问题,提出一种基于Morlet小波和分类回归树(Classification and Regression Tree,CART)的滚动轴承故障诊断方法。首先,利用Morlet小波分析方法和移动窗方法对轴承振动信号进行样本处理。其次,对提取的短样本进行变分模态分解与特征提取,完成训练集和测试集的构建。然后,使用训练集训练CART决策树分类模型,同时引入随机搜索和K折交叉验证用于模型关键参数优化,以获取理想的轴承故障分类模型。测试集验证结果表明,该方法不但能实现多种轴承故障的有效诊断、在含噪测试集中表现良好,而且单个样本的数据长度和采样时长的缩短效果明显。 展开更多
关键词 故障诊断 滚动轴承 Morlet 小波 VMD cart 决策树
在线阅读 下载PDF
基于CART决策树和BP神经网络的landsat 8影像粳稻提取方法 被引量:8
8
作者 许童羽 胡开越 +2 位作者 周云成 于丰华 冯帅 《沈阳农业大学学报》 CAS CSCD 北大核心 2020年第2期169-176,共8页
及时、准确地掌握水稻空间分布和种植面积信息对预测水稻产量、指导农业生产等农业活动起着重要作用。遥感技术因其快速、综合等优势,而被广泛应用于农作物识别领域。以沈阳市为研究区域,选取沈阳农业大学道南、辽中和沈北新区作为粳稻... 及时、准确地掌握水稻空间分布和种植面积信息对预测水稻产量、指导农业生产等农业活动起着重要作用。遥感技术因其快速、综合等优势,而被广泛应用于农作物识别领域。以沈阳市为研究区域,选取沈阳农业大学道南、辽中和沈北新区作为粳稻种植代表区域获取CART算法的训练样本,并结合粳稻移栽期的NDVI、EVI、LSWI数据,训练作物分割阈值,构建决策树初步提取出研究区粳稻空间分布信息。为进一步去除上述提取区域的其他地物信息,构建粳稻抽穗期和成熟期的植被指数、纹理、ISODATA非监督分类数据及其原始波谱特征的多特征数据集,利用BP神经网络对多组不同特征综合数据集进行粳稻分类提取,得到对分类精度贡献较大的特征和最佳分类数据集,并分别利用最大似然和BP神经网络分类法,结合决策树分类结果和实地样本数据,对最佳分类数据集进行分类结果对比和精度验证。结果表明:采用CART决策树和BP神经网络相结合的方法可以获得较高的分类精度,总体精度为89.1%,Kappa系数达到0.881。利用作物关键物候期中等分辨率影像,结合多时相波谱特征和植被指数,采用CART决策树和BP神经网络相结合的分类法能有效提高粳稻的分类精度,为基于传统机器学习模型的关键物候期遥感数据作物分类研究提供一条新思路。 展开更多
关键词 粳稻 cart算法 决策树 植被指数 BP神经网络
在线阅读 下载PDF
基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择 被引量:2
9
作者 赵荣荣 丛楠 赵闯 《作物学报》 CAS CSCD 北大核心 2024年第3期721-733,共13页
遥感技术对大尺度农业实时监测提供了一个理想的手段,遥感影像植被分类的最佳时相对作物种植面积遥感监测非常重要。本文选取2020年至2021年的6景Landsat 8影像,覆盖了夏玉米从乳熟到收获、冬小麦从越冬到成熟的生育期,以此分析不同时... 遥感技术对大尺度农业实时监测提供了一个理想的手段,遥感影像植被分类的最佳时相对作物种植面积遥感监测非常重要。本文选取2020年至2021年的6景Landsat 8影像,覆盖了夏玉米从乳熟到收获、冬小麦从越冬到成熟的生育期,以此分析不同时相的冬小麦-夏玉米与其他地类在光谱特征和NDVI上的差异,通过决策树的方法提取豫中地区冬小麦-夏玉米的空间分布情况。结果表明,冬小麦-夏玉米在不同生长发育时期,提取到的面积比有所不同,对于夏玉米而言,乳熟时期的提取效果要优于之后的时期,其在2020年8月26日的总体精度最高,为83.60%,Kappa系数为0.72,分类质量很好;对于冬小麦而言,最佳识别时期则处于冬小麦的越冬期,其在2021年1月1日的总体精度最高,为92.36%,Kappa系数为0.81,信息提取效果很好。除了作物自身生长过程的覆盖度变化,分类精度随成像时间而改变。多时相信息提取也发现,受到天气等环境条件限制,夏玉米和冬小麦的种植区域不完全重叠,山区冬季不适合冬小麦种植从而没有与夏玉米出现重叠分布。本研究有助于我们从宏观上对作物分布及生长状况作出及时有效的判断,对农业监测,特别是对轮作农田的信息管理和作物物候、种植面积等研究具有广阔的应用前景。 展开更多
关键词 冬小麦-夏玉米 光谱特征 决策树分类 分类精度 Landsat 8-OLI遥感影像
在线阅读 下载PDF
基于线性回归和灰狼优化的电力工程成本及工期预测方法
10
作者 徐宁 李维嘉 +2 位作者 洪崇 刘云 周波 《沈阳工业大学学报》 北大核心 2025年第3期295-301,共7页
【目的】电力工程项目通常具有成本高和工期长的特点,且施工过程中受到多种因素的影响,如气候条件、原材料成本等。传统的成本和工期预测主要依赖经验,容易导致成本估算不足或冗余,进而造成工期延误或资源浪费。随着机器学习技术的快速... 【目的】电力工程项目通常具有成本高和工期长的特点,且施工过程中受到多种因素的影响,如气候条件、原材料成本等。传统的成本和工期预测主要依赖经验,容易导致成本估算不足或冗余,进而造成工期延误或资源浪费。随着机器学习技术的快速发展,基于数据驱动的方法被引入成本和工期预测中,但由于电力工程领域的数据集规模较小,传统机器学习模型易出现过拟合问题,预测性能受限。基于该背景提出了一种结合支持向量回归(SVR)、分类与回归决策树(CART)、多变量线性回归模型(MLR)和灰狼优化算法(GWO)的混合模型,通过改进更新策略和参数搜索方法,以提升模型在小数据集上的预测精度和泛化能力。【方法】方案结合机器学习模型和改进的灰狼优化算法,搭建了一个高效的电力工程成本和工期预测框架。采用支持向量回归、分类与回归决策树和多变量线性回归模型作为基线机器学习方法,并利用灰狼优化算法对上述模型的参数进行搜索以防止过拟合,同时提出两项改进措施:采用混沌序列初始化狼群位置,确保种群多样性;优化灰狼位置的更新策略,通过周围群体信息共享提升搜索能力。【结果】实验结果表明,与传统方法相比,所提出的混合模型在成本和工期预测上具有较明显的优势。在训练和测试集上的性能结果对比显示,传统机器学习模型容易产生过拟合问题,导致泛化能力不足,而结合GWO的模型改善了该问题。其中,MLR+GWO混合模型在训练集和测试集上的表现均优于其他模型。进一步实验结果表明,通过改进灰狼优化算法(iGWO),混合模型的收敛速度显著加快,仅需6~8次迭代即可达到较优的适应度,而传统GWO算法需迭代11~12次才能达到类似效果。此外,改进算法有效避免了传统GWO算法容易陷入局部最优的问题。【结论】所提出基于线性回归和改进灰狼优化算法的混合模型在电力工程成本和工期预测领域展现出较为明显的性能优势。改进的灰狼优化算法通过优化初始化序列及更新策略,提升了算法的全局搜索能力和收敛速度。提出的混合模型泛化性能优于传统的机器学习模型,与传统方法相比,该方法在预测精度和训练效率方面均表现良好。 展开更多
关键词 电力工程 成本预测 工期预测 支持向量回归 决策树 线性回归 灰狼优化算法 混沌序列
在线阅读 下载PDF
基于级联的航班地面保障动态预测
11
作者 唐小卫 丁叶 +3 位作者 吴政隆 张生润 吴佳琦 叶梦凡 《北京航空航天大学学报》 北大核心 2025年第5期1557-1565,共9页
对航班地面保障过程进行精准预测是实现航班精细化管理、提升机场协同决策(A-CDM)系统管理效能的关键。为此,提出一种基于级联多输出梯度提升回归树模型的航班地面保障多节点动态预测方法。通过搭建级联框架实现了不同保障进度之间预测... 对航班地面保障过程进行精准预测是实现航班精细化管理、提升机场协同决策(A-CDM)系统管理效能的关键。为此,提出一种基于级联多输出梯度提升回归树模型的航班地面保障多节点动态预测方法。通过搭建级联框架实现了不同保障进度之间预测信息的传递和预测结果的更新,基于可进行多节点预测的梯度提升回归树设计了地面保障过程动态预测算法,以典型繁忙机场为对象构建了航班基础属性与层级信息传递两大类特征集。结果表明:所提方法有效实现了地面保障各关键节点完成时间的动态预测,初始预测各节点±5 min预测精度均达到80%以上,随着保障过程推进模型预测性能逐步提升,超过60%的节点±5 min最终预测精度超过95%,为提升航班运行的可预测性和机场多主体协同决策能力提供有效方法支撑。 展开更多
关键词 航空运输 航班地面保障 机场协同决策 级联 梯度提升回归树 动态预测
在线阅读 下载PDF
基于机器学习的老年全身麻醉颈椎术后谵妄发生风险模型的构建与验证 被引量:2
12
作者 徐娟 刘婷婷 +1 位作者 高俊 蒋云芬 《军事护理》 北大核心 2025年第2期58-61,66,共5页
目的 构建并筛选出评估效能最佳的老年全身麻醉颈椎术后谵妄发生风险模型,为临床干预提供依据。方法 2021年5月至2023年10月,采用便利抽样法选取某院老年全身麻醉颈椎术后患者323例为训练集,将同期另一所医院的同类患者233例为验证集。... 目的 构建并筛选出评估效能最佳的老年全身麻醉颈椎术后谵妄发生风险模型,为临床干预提供依据。方法 2021年5月至2023年10月,采用便利抽样法选取某院老年全身麻醉颈椎术后患者323例为训练集,将同期另一所医院的同类患者233例为验证集。根据术后3 d是否发生谵妄,将其分为谵妄组和非谵妄组。采用单因素及二元Logistic回归分析确定术后危险因素,采用列线图、决策树CART、随机森林构建风险模型,通过受试者工作曲线(receiver operator characteristic, ROC)分析不同模型的评估效能。结果 单因素分析及二元Logistic回归分析确定,术中输血、术后脑脊液渗漏、糖尿病、手术时长等均为老年全身麻醉颈椎术后谵妄发生的危险因素(均P<0.05),据此建立列线图模型。决策树CART模型分析显示年龄为根节点,手术时长、糖尿病、术中输血等为子节点。随机森林模型筛选出年龄、手术时长、术中输血、糖尿病等7个重要变量。在训练集和验证集,列线图模型、决策树CART模型、随机森林模型评估的曲线下面积分别为0.888和0.895、0.874和0.884、0.911和0.911,随机森林模型与决策树CART模型的差异均有统计学意义(均P<0.05)。结论 三种模型对老年全身麻醉颈椎术后谵妄均有评估价值,随机森林模型效能最优。 展开更多
关键词 全身麻醉颈椎术后 谵妄 列线图 决策树cart 随机森林
在线阅读 下载PDF
基于影像多种特征的CART决策树分类方法及其应用 被引量:62
13
作者 陈云 戴锦芳 李俊杰 《地理与地理信息科学》 CSCD 北大核心 2008年第2期33-36,共4页
以扬州市宝应县为研究区,采用主成分分析法对研究区影像进行数据压缩和单波段数据增强,利用灰度共生矩阵分析第一主成分的纹理信息。运用基于CART算法的决策树分类方法,选用影像的光谱特征值、NDVI值以及纹理统计量值为测试变量,并通过... 以扬州市宝应县为研究区,采用主成分分析法对研究区影像进行数据压缩和单波段数据增强,利用灰度共生矩阵分析第一主成分的纹理信息。运用基于CART算法的决策树分类方法,选用影像的光谱特征值、NDVI值以及纹理统计量值为测试变量,并通过计算确定决策树的节点规则,提取影像中主要地物信息。将分类结果与单纯依靠光谱特征的监督分类法结果相比较,表明基于影像多种特征的CART决策树分类方法分类精度较高,尤其较好地提取了围网养殖区和建设用地。 展开更多
关键词 纹理特征 光谱特征 cart 决策树
在线阅读 下载PDF
基于分类回归树(CART)方法的统计解析模型的应用与研究 被引量:31
14
作者 张立彬 张其前 +1 位作者 胥芳 杜奖胜 《浙江工业大学学报》 CAS 2002年第4期315-318,共4页
分类回归树是基于统计理论的非参数的识别技术 ,它具有非常强大的统计解析功能 ,对输入数据和预测数据的要求可以是不完整的 ,或者是复杂的浮点数运算。而且 ,数据处理后的结果所包含的规则明白易懂。因此 ,分类回归树已成为对特征数据... 分类回归树是基于统计理论的非参数的识别技术 ,它具有非常强大的统计解析功能 ,对输入数据和预测数据的要求可以是不完整的 ,或者是复杂的浮点数运算。而且 ,数据处理后的结果所包含的规则明白易懂。因此 ,分类回归树已成为对特征数据进行建立统计解析模型的一个很好的方法。本文首先介绍了一种构建分类回归树的算法 ,并对其剪枝策略进行了简单的探讨 ,最后用统计解析软件S PLUS对一个应用实例进行了分析 。 展开更多
关键词 cart 分类回归树 二叉树 S-PLUS 统计解析模型 剪枝策略 数据处理 建模方法
在线阅读 下载PDF
基于变化检测-CART决策树模式自动识别沙漠化信息 被引量:12
15
作者 黄晓君 颉耀文 +3 位作者 卫娇娇 付苗 吕利利 张玲玲 《灾害学》 CSCD 2017年第1期36-42,共7页
目前沙漠化遥感监测存在目视解译的局限性、数据源的约束性、遥感信息利用率低等问题。基于此,以民勤盆地为试验区,首先采用图像差值、最大值合成及二维最大类间方差等方法,检测1994年、2014年两期Landsat图像的变化像元,然后利用分类... 目前沙漠化遥感监测存在目视解译的局限性、数据源的约束性、遥感信息利用率低等问题。基于此,以民勤盆地为试验区,首先采用图像差值、最大值合成及二维最大类间方差等方法,检测1994年、2014年两期Landsat图像的变化像元,然后利用分类与回归树(CART)算法构建决策树,自动提取了2014年沙地信息,最后将变化检测结果与沙地信息进行空间叠置分析,并实现了沙漠化信息自动识别模式。研究表明,变化检测-CART决策树模式精度为89.43%~93.00%,在95%置信水平上其置信区间介于85.90%~98.00%,显然其精度具有较高可信度;该模式不仅能够充分利用丰富遥感信息而且可排除多余信息的干扰。可见,变化检测-CART决策树模式是识别沙漠化信息的有效方法之一,将对沙漠化防治工程具有重要应用价值。 展开更多
关键词 沙漠化 分类与回归树(cart) 决策树 变化检测 自动识别
在线阅读 下载PDF
结合递增式学习的CART算法改进 被引量:11
16
作者 骆盈盈 王柯玲 +1 位作者 陈川 毛云芳 《计算机工程与设计》 CSCD 北大核心 2007年第7期1520-1522,共3页
阐述了基于gini系数的决策树构造算法——CART算法。为了使算法能处理递增的数据,引入递增式学习方法,提出了一种改进算法。递增式学习的主要思想是测试函数提升。首先使用己有的数据用CART算法生成一棵决策树,然后使用递增的数据和递... 阐述了基于gini系数的决策树构造算法——CART算法。为了使算法能处理递增的数据,引入递增式学习方法,提出了一种改进算法。递增式学习的主要思想是测试函数提升。首先使用己有的数据用CART算法生成一棵决策树,然后使用递增的数据和递增式学习的方法来修改己有的决策树。最后从理论和实践两方面证明了改进算法的正确性和有效性。 展开更多
关键词 数据挖掘 决策树 cart算法 递增式学习 测试函数
在线阅读 下载PDF
改进的CART算法在煤层底板突水预测中的应用 被引量:23
17
作者 杜春蕾 张雪英 李凤莲 《工矿自动化》 北大核心 2014年第12期52-56,共5页
针对基于传统CART算法建立的煤层底板突水预测模型存在运行时间较长、准确率不高等缺点,介绍了一种改进的CART算法决策树模型,并将其用于煤层底板突水预测模型的建立。实验结果表明,采用改进的CART算法建立的煤层底板突水预测模型运行... 针对基于传统CART算法建立的煤层底板突水预测模型存在运行时间较长、准确率不高等缺点,介绍了一种改进的CART算法决策树模型,并将其用于煤层底板突水预测模型的建立。实验结果表明,采用改进的CART算法建立的煤层底板突水预测模型运行时间由1.041 1s减少到了0.612 5s,突水预测正确率由88.78%提高到了95.54%。 展开更多
关键词 煤层底板 突水预测 cart算法 决策树模型 最优阈值
在线阅读 下载PDF
基于CART决策树与最大似然比法的植被分类方法研究 被引量:29
18
作者 张晓娟 杨英健 +2 位作者 盖利亚 李亮 王宇 《遥感信息》 CSCD 2010年第2期88-92,共5页
结合阿坝若尔盖县大骨节病典型病区植被分布特点,选用不同时相SPOT4及ETM遥感数据,提出了将较易实现的CART决策树算法与最大似然比分类法有机结合在一起进行植被分类的方法。决策树算法能很好地区分植被大类,分类精度达到96%,但是无法... 结合阿坝若尔盖县大骨节病典型病区植被分布特点,选用不同时相SPOT4及ETM遥感数据,提出了将较易实现的CART决策树算法与最大似然比分类法有机结合在一起进行植被分类的方法。决策树算法能很好地区分植被大类,分类精度达到96%,但是无法确定区分乔木亚类的阈值;最大似然比法整体分类精度不高,仅为84%,但是针对乔木亚类的分类精度能达到94%,将两种算法综合利用,最终总分类精度达到95.05%,Kappa系数达到0.9016。良好的分类结果不但为研究该区植被覆盖状况与发病率关系提供了很好的一手资料,并且分类算法较易实现,尤其对于新入门者较为实用和快捷。 展开更多
关键词 植被分类 决策树算法 最大似然比法
在线阅读 下载PDF
基于二项logistic回归模型与CART树的煤层底板突水预测 被引量:15
19
作者 刘再斌 靳德武 刘其声 《煤田地质与勘探》 CAS CSCD 北大核心 2009年第1期56-61,共6页
为定量评价煤层底板突水信息对突水过程的影响程度,获得煤层底板突水规则,采用二项logistic回归与CART树相结合的方法进行煤层底板突水预测。在煤层底板突水信息分析的基础上,建立了包含全因素的煤层底板突水预测概率模型,基于向后逐步... 为定量评价煤层底板突水信息对突水过程的影响程度,获得煤层底板突水规则,采用二项logistic回归与CART树相结合的方法进行煤层底板突水预测。在煤层底板突水信息分析的基础上,建立了包含全因素的煤层底板突水预测概率模型,基于向后逐步回归分析方法获得了包含6项主要突水信息的精简煤层底板突水预测概率模型。通过CART树算法获得了煤层底板突水规则,分类测试结果表明,所获得的突水规则分类准确率达到91.67%。 展开更多
关键词 二项logisitic回归 突水预测 突水信息 cart
在线阅读 下载PDF
CART决策树的两种改进及应用 被引量:61
20
作者 张亮 宁芊 《计算机工程与设计》 北大核心 2015年第5期1209-1213,共5页
利用Fayyad边界点判定原理对CART决策树选取连续属性的分割阈值的方法进行改进,由Fayyad边界点判定原理可知,建树过程中选取连续属性的分割阈值时,不需要检查每一个分割点,只要检查样本排序后,该属性相邻不同类别的分界点即可;针对样本... 利用Fayyad边界点判定原理对CART决策树选取连续属性的分割阈值的方法进行改进,由Fayyad边界点判定原理可知,建树过程中选取连续属性的分割阈值时,不需要检查每一个分割点,只要检查样本排序后,该属性相邻不同类别的分界点即可;针对样本集主类类属分布不平衡时,样本量占相对少数的小类属样本不能很好地对分类进行表决的情况,采用关键度度量的方法进行改进。基于这两点改进构建CART分类器。实验结果表明,Fayyad边界点判定原理适用于CART算法,利用改进后的CART算法生成决策树的效率提高了近45%,在样本集主类类属分布不平衡的情况下,分类准确率也略有提高。 展开更多
关键词 决策树 cart算法 分割阈值 Fayyad边界点判定定理 关键度度量
在线阅读 下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部