期刊文献+
共找到98篇文章
< 1 2 5 >
每页显示 20 50 100
Challenges and Suggestions of Ethical Review on Clinical Research Involving Brain-Computer Interfaces
1
作者 Xue-Qin Wang Hong-Qiang Sun +3 位作者 Jia-Yue Si Zi-Yan Lin Xiao-Mei Zhai Lin Lu 《Chinese Medical Sciences Journal》 CAS CSCD 2024年第2期131-139,共9页
Brain-computer interface(BCI)technology is rapidly advancing in medical research and application.As an emerging biomedical engineering technology,it has garnered significant attention in the clinical research of brain... Brain-computer interface(BCI)technology is rapidly advancing in medical research and application.As an emerging biomedical engineering technology,it has garnered significant attention in the clinical research of brain disease diagnosis and treatment,neurological rehabilitation,and mental health.However,BCI also raises several challenges and ethical concerns in clinical research.In this article,the authors investigate and discuss three aspects of BCI in medicine and healthcare:the state of international ethical governance,multidimensional ethical challenges pertaining to BCI in clinical research,and suggestive concerns for ethical review.Despite the great potential of frontier BCI research and development in the field of medical care,the ethical challenges induced by itself and the complexities of clinical research and brain function have put forward new special fields for ethics in BCI.To ensure"responsible innovation"in BCI research in healthcare and medicine,the creation of an ethical global governance framework and system,along with special guidelines for cutting-edge BCI research in medicine,is suggested. 展开更多
关键词 brain-computer interface clinical research BIOETHICS ethical governance ethical review
在线阅读 下载PDF
Non-invasive EEG-based brain-computer interfaces in patients with disorders of consciousness 被引量:1
2
作者 Emilia Mikoajewska Dariusz Mikoajewski 《Journal of Medical Colleges of PLA(China)》 CAS 2014年第2期109-114,共6页
Disorders of consciousness(DoCs) are chronic conditions resulting usually from severe neurological deficits. The limitations of the existing diagnosis systems and methodologies cause a need for additional tools for re... Disorders of consciousness(DoCs) are chronic conditions resulting usually from severe neurological deficits. The limitations of the existing diagnosis systems and methodologies cause a need for additional tools for relevant patients with DoCs assessment, including brain-computer interfaces(BCIs). Recent progress in BCIs' clinical applications may offer important breakthroughs in the diagnosis and therapy of patients with DoCs. Thus the clinical significance of BCI applications in the diagnosis of patients with DoCs is hard to overestimate. One of them may be brain-computer interfaces. The aim of this study is to evaluate possibility of non-invasive EEG-based brain-computer interfaces in diagnosis of patients with DOCs in post-acute and long-term care institutions. 展开更多
关键词 neurological disorders disorders of consciousness brain-computer interfaces EEG-based bcis
在线阅读 下载PDF
Application of Brain-Computer-Interface in Awareness Detection Using Machine Learning Methods 被引量:1
3
作者 Kaiqiang Feng Weilong Lin +6 位作者 Feng Wu Chengxin Pang Liang Song Yijia Wu Rong Cao Huiliang Shang Xinhua Zeng 《China Communications》 SCIE CSCD 2022年第6期279-291,共13页
The awareness detection in patients with disorders of consciousness currently relies on behavioral observations and CRS-R tests,however,the misdiagnosis rates have been relatively high.In this study,we applied brain-c... The awareness detection in patients with disorders of consciousness currently relies on behavioral observations and CRS-R tests,however,the misdiagnosis rates have been relatively high.In this study,we applied brain-computer interface(BCI)to awareness detection with a passive auditory stimulation paradigm.12 subjects with normal hearing were invited to collect electroencephalogram(EEG)based on a BCI communication system,in which EEG signals are transmitted wirelessly.After necessary preprocessing,RBF-SVM and EEGNet were used for algorithm realization and analysis.For a single subject,RBF-SVM can distinguish his(her)name stimuli awareness with classification accuracies ranging from 60-95%.EEGNet was used to learn all subjects'data and improved accuracy to 78.04%for characteristics finding and model generalization.Moreover,we completed the supplementary analysis work from the time domain and time-frequency domain.This study applied BCI communication to human awareness detection,proposed a passive auditory paradigm,and proved the effectiveness,which could be an inspiration for brain,mental or physical diseases diagnosis and detection. 展开更多
关键词 brain-computer interface EEG awareness detection machine learning deep learning
在线阅读 下载PDF
Double Deep Q-Network Decoder Based on EEG Brain-Computer Interface 被引量:1
4
作者 REN Min XU Renyu ZHU Ting 《ZTE Communications》 2023年第3期3-10,共8页
Brain-computer interfaces(BCI)use neural activity as a control signal to enable direct communication between the human brain and external devices.The electrical signals generated by the brain are captured through elec... Brain-computer interfaces(BCI)use neural activity as a control signal to enable direct communication between the human brain and external devices.The electrical signals generated by the brain are captured through electroencephalogram(EEG)and translated into neural intentions reflecting the user’s behavior.Correct decoding of the neural intentions then facilitates the control of external devices.Reinforcement learning-based BCIs enhance decoders to complete tasks based only on feedback signals(rewards)from the environment,building a general framework for dynamic mapping from neural intentions to actions that adapt to changing environments.However,using traditional reinforcement learning methods can have challenges such as the curse of dimensionality and poor generalization.Therefore,in this paper,we use deep reinforcement learning to construct decoders for the correct decoding of EEG signals,demonstrate its feasibility through experiments,and demonstrate its stronger generalization on motion imaging(MI)EEG data signals with high dynamic characteristics. 展开更多
关键词 brain-computer interface(bci) electroencephalogram(EEG) deep reinforcement learning(Deep RL) motion imaging(MI)generalizability
在线阅读 下载PDF
Common Spatial Pattern Ensemble Classifier and Its Application in Brain-Computer Interface 被引量:5
5
作者 Xu Lei Ping Yang Peng Xu Tie-Jun Liu De-Zhong Yao 《Journal of Electronic Science and Technology of China》 2009年第1期17-21,共5页
Abstract-Common spatial pattern (CSP) algorithm is a successful tool in feature estimate of brain-computer interface (BCI). However, CSP is sensitive to outlier and may result in poor outcomes since it is based on... Abstract-Common spatial pattern (CSP) algorithm is a successful tool in feature estimate of brain-computer interface (BCI). However, CSP is sensitive to outlier and may result in poor outcomes since it is based on pooling the covariance matrices of trials. In this paper, we propose a simple yet effective approach, named common spatial pattern ensemble (CSPE) classifier, to improve CSP performance. Through division of recording channels, multiple CSP filters are constructed. By projection, log-operation, and subtraction on the original signal, an ensemble classifier, majority voting, is achieved and outlier contaminations are alleviated. Experiment results demonstrate that the proposed CSPE classifier is robust to various artifacts and can achieve an average accuracy of 83.02%. 展开更多
关键词 brain-computer interface channel selection classifier ensemble common spatial pattern.
在线阅读 下载PDF
Probabilistic Methods in Multi-Class Brain-Computer Interface 被引量:1
6
作者 Ping Yang Xu Lei Tie-Jun Liu Peng Xu De-Zhong Yao 《Journal of Electronic Science and Technology of China》 2009年第1期12-16,共5页
Abstract-Two probabilistic methods are extended to research multi-class motor imagery of brain-computer interface (BCI): support vector machine (SVM) with posteriori probability (PSVM) and Bayesian linear discr... Abstract-Two probabilistic methods are extended to research multi-class motor imagery of brain-computer interface (BCI): support vector machine (SVM) with posteriori probability (PSVM) and Bayesian linear discriminant analysis with probabilistic output (PBLDA). A comparative evaluation of these two methods is conducted. The results shows that: 1) probabilistie information can improve the performance of BCI for subjects with high kappa coefficient, and 2) PSVM usually results in a stable kappa coefficient whereas PBLDA is more efficient in estimating the model parameters. 展开更多
关键词 Bayesian linear discriminant analysis brain-computer interface kappa coefficient support vector machine.
在线阅读 下载PDF
Transfer Learning Algorithm Design for Feature Transfer Problem in Motor Imagery Brain-computer Interface
7
作者 Yu Zhang Huaqing Li +3 位作者 Heng Dong Zheng Dai Xing Chen Zhuoming Li 《China Communications》 SCIE CSCD 2022年第2期39-46,共8页
The non-stationary of the motor imagery electroencephalography(MI-EEG)signal is one of the main limitations for the development of motor imagery brain-computer interfaces(MI-BCI).The nonstationary of the MI-EEG signal... The non-stationary of the motor imagery electroencephalography(MI-EEG)signal is one of the main limitations for the development of motor imagery brain-computer interfaces(MI-BCI).The nonstationary of the MI-EEG signal and the changes of the experimental environment make the feature distribution of the testing set and training set deviates,which reduces the classification accuracy of MI-BCI.In this paper,we propose a Kullback–Leibler divergence(KL)-based transfer learning algorithm to solve the problem of feature transfer,the proposed algorithm uses KL to measure the similarity between the training set and the testing set,adds support vector machine(SVM)classification probability to classify and weight the covariance,and discards the poorly performing samples.The results show that the proposed algorithm can significantly improve the classification accuracy of the testing set compared with the traditional algorithms,especially for subjects with medium classification accuracy.Moreover,the algorithm based on transfer learning has the potential to improve the consistency of feature distribution that the traditional algorithms do not have,which is significant for the application of MI-BCI. 展开更多
关键词 brain-computer interface motor imagery feature transfer transfer learning domain adaptation
在线阅读 下载PDF
Design of an EEG Preamplifier for Brain-Computer Interface
8
作者 Xian-Jie Pu Tie-Jun Liu De-Zhong Yao 《Journal of Electronic Science and Technology of China》 2009年第1期56-60,共5页
As a non-invasive neurophysiologieal index for brain-computer interface (BCI), electroencephalogram (EEG) attracts much attention at present. In order to have a portable BCI, a simple and efficient pre-amplifier i... As a non-invasive neurophysiologieal index for brain-computer interface (BCI), electroencephalogram (EEG) attracts much attention at present. In order to have a portable BCI, a simple and efficient pre-amplifier is crucial in practice. In this work, a preamplifier based on the characteristics of EEG signals is designed, which consists of a highly symmetrical input stage, low-pass filter, 50 Hz notch filter and a post amplifier. A prototype of this EEG module is fabricated and EEG data are obtained through an actual experiment. The results demonstrate that the EEG preamplifier will be a promising unit for BCI in the future. 展开更多
关键词 brain-computer interface(bci) electroencephalogram(EEG) FILTERING interference pre amplifier.
在线阅读 下载PDF
AI+BCI硅基碳基融合新智能的开始
9
作者 尹奎英 遇涛 《指挥控制与仿真》 2024年第3期1-11,共11页
我们正迎来人类发展的第四次浪潮,正处于从信息社会向人类社会-物理世界-信息空间融合的智能社会的关键转型期。近年来,计算和信息技术飞速发展,深度学习的空前普及和成功将人工智能(AI)确立为人类探索机器智能的前沿领域。与此同时,得... 我们正迎来人类发展的第四次浪潮,正处于从信息社会向人类社会-物理世界-信息空间融合的智能社会的关键转型期。近年来,计算和信息技术飞速发展,深度学习的空前普及和成功将人工智能(AI)确立为人类探索机器智能的前沿领域。与此同时,得益于器件的革命性进展和人工智能(AI)的发展,脑机接口(BCI)植入技术同样快速落地,这意味着BCI+AI碳基硅基融合的开始,然而,硅基和碳基运算的底层逻辑存在根本差异,脑的智能机制仍有待进一步探索。本研究提出的视觉认知引导的孪生AI深度网络,是由个人意识驱动的深度网络技术,通过捕捉并解析个体的思维模式和创意灵感,为每个用户量身打造独特的视觉世界。在这样的环境中,每个人都成为自己创造世界的视觉主导者,打破物质和意识的壁垒,得以展现丰富的个性和创造力。 展开更多
关键词 人工智能 脑机接口 人脑视觉表征 脑视觉重构 意识孪生
在线阅读 下载PDF
基于P300电位的新型BCI中文输入虚拟键盘系统 被引量:20
10
作者 吴边 苏煜 +4 位作者 张剑慧 李昕 张吉财 陈卫东 郑筱祥 《电子学报》 EI CAS CSCD 北大核心 2009年第8期1733-1738,1745,共7页
近年来各种信号处理技术随着计算能力的提高取得了巨大进展,推动了人机交互(HCI)技术的发展.脑机接口(BCI)是一种特殊的人机交互通道,在最近几年引起广泛关注.P300电位是一种事件相关电位,利用诱发人类P300的原理,可以实现基于P300的BC... 近年来各种信号处理技术随着计算能力的提高取得了巨大进展,推动了人机交互(HCI)技术的发展.脑机接口(BCI)是一种特殊的人机交互通道,在最近几年引起广泛关注.P300电位是一种事件相关电位,利用诱发人类P300的原理,可以实现基于P300的BCI系统.此类系统以往常用于英文字母的输入,本研究首次设计并开发了一套进行汉字输入的在线P300-BCI系统.系统利用汉字基于笔画的特性简化了P300诱发界面,并据此设计了相应的汉字虚拟键盘.利用此系统进行的在线输入实验表明,此中文BCI的设计是可行的,对系统的进一步完善将可以为汉语系的瘫痪患者的机能恢复提供新的选项. 展开更多
关键词 脑机接口 P300 中文输入 虚拟键盘
在线阅读 下载PDF
全球脑机接口技术与产业发展态势
11
作者 周洁 成苈委 《信息通信技术与政策》 2025年第3期53-58,共6页
脑机接口(Brain-Computer Interface,BCI)作为一种变革性技术,通过直接在大脑与外部设备间建立通信与控制通道,实现了对人体功能的辅助、增强和修复。近年来,随着神经科学、人工智能等领域的快速发展,BCI技术正逐步从实验室走向临床应... 脑机接口(Brain-Computer Interface,BCI)作为一种变革性技术,通过直接在大脑与外部设备间建立通信与控制通道,实现了对人体功能的辅助、增强和修复。近年来,随着神经科学、人工智能等领域的快速发展,BCI技术正逐步从实验室走向临床应用和商业化。系统梳理了BCI技术的分类、发展趋势以及产业发展现状,并对未来趋势进行了研判。在技术层面,通信和运动类BCI以及治疗类BCI均取得了显著进展,包括无创和有创技术的创新。在产业发展方面,全球多地政府已开展脑计划规划,为BCI指引发展方向,同时投融资活动日益活跃,产业链布局不断完善。预计未来将涌现一批BCI产业集聚区和优秀企业,推动产业加速发展。BCI技术有望在医疗康复、教育、工业等领域广泛应用,重塑人机交互范式。 展开更多
关键词 脑机接口 通信和运动类bci 治疗类bci 无创技术 有创技术
在线阅读 下载PDF
SSSEP提升下肢MI-BCI系统性能及其多维脑电特征分析 被引量:3
12
作者 张力新 常美榕 +2 位作者 王仲朋 陈龙 明东 《中国生物医学工程学报》 CAS CSCD 北大核心 2021年第4期429-437,共9页
运动想象脑-机接口(MI-BCI)可解码用户运动意图,为无法自主运动患者提供一种额外交互控制通道,辅助或改善其生活方式。针对现有下肢MI-BCI分类性能较低等关键问题,引入了体感电刺激(ES)用于下肢MI-BCI构建混合范式(MI+ES),并与传统单一... 运动想象脑-机接口(MI-BCI)可解码用户运动意图,为无法自主运动患者提供一种额外交互控制通道,辅助或改善其生活方式。针对现有下肢MI-BCI分类性能较低等关键问题,引入了体感电刺激(ES)用于下肢MI-BCI构建混合范式(MI+ES),并与传统单一范式(MI)对比。共20名年轻健康右利手受试参与实验,5名参与最优诱发频率验证试验,15名参与正式实验。随后采集了参与正式实验的15名受试不同条件下脑电(EEG)数据,应用傅里叶变换(FFT)和事件相关谱扰动(ERSP)算法提取EEG频域响应、时频特征等,并计算alpha(8~14 Hz)、低beta(15~24 Hz)和高beta(25~35 Hz)等多频段能量变化。此外,分别探索了MI/(MI+ES)条件、共空间模式(CSP)/基于多频率成分的共空间模式(FBCSP)特征提取方法对下肢MI-BCI系统分类性能的影响。结果表明,引入体感电刺激策略可诱发明显的SSSEP特征,MI+ES条件分类准确率较单一MI条件有显著性提升(P<0.001),且应用FBCSP方法的系统分类准确率显著优于经典CSP方法(P<0.01):CSP特征提取方法下MI+ES条件的平均分类准确率为70.2%,其中受试S15的分类准确率达84.2%;FBCSP方法下的平均分类准确率为71.7%,受试S15的分类结果达到90%。初步证实了受试在体感电刺激条件下可诱发出明显的SSSEP特征,而且其融合MI可有效提升下肢MI-BCI分类性能,可支撑下肢MI-BCI系统的实用化进程,也为外周神经相关体感刺激调控方法的优化设计提供了新的技术思路。 展开更多
关键词 下肢运动想象 脑-机接口(bci) 稳态体感诱发电位(SSSEP) 事件相关谱扰动 分类识别
在线阅读 下载PDF
Embedded BCI Rehabilitation System for Stroke 被引量:2
13
作者 Wanzeng Kong Siman Fu +3 位作者 Bin Deng Hong Zeng Jianhai Zhang Shijie Guo 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期35-41,共7页
In stroke rehabilitation,rehabilitation equipments can help with the training.But traditional equipments are not convenient to carry,which limits patients to use related rehabilitation techniques.To solve this kind of... In stroke rehabilitation,rehabilitation equipments can help with the training.But traditional equipments are not convenient to carry,which limits patients to use related rehabilitation techniques.To solve this kind of problem,a new embedded rehabilitation system based on brain computer interface(BCI)is proposed in this paper.The system is based on motor imagery(MI)therapy,in which electroencephalogram(EEG)is evoked by grasping motor imageries of left and right hands,then collected by a wearable device.The EEG is transmitted to a Raspberry Pie processing unit through Bluetooth and decoded as the instructions to control the equipment extension.Users experience the limb movement through the visual feedback so as to achieve active rehabilitation.A pilot study shows that the user can control the movement of the rehabilitation equipment through his mind,and the equipment is convenient to carry.The study provides a new way to stroke rehabilitation. 展开更多
关键词 STROKE REHABILITATION EMBEDDED brain computer interface(bci) MOTOR imagery(MI)
在线阅读 下载PDF
通道扩维与FastICA算法相融合用于BCI运动想象脑电信号识别 被引量:1
14
作者 翟克文 刘建平 司昕路 《微电子学与计算机》 CSCD 北大核心 2015年第11期180-184,共5页
FastICA是独立成分分析法(ICA)中的一种快速算法,因其收敛速度快而备受关注.本文将基于负熵判据的FastICA算法应用于运动想象脑电信号的识别中,并根据ICA算法的特点设计了数据处理的实验流程.针对2003年国际BCI竞赛data set III中通道... FastICA是独立成分分析法(ICA)中的一种快速算法,因其收敛速度快而备受关注.本文将基于负熵判据的FastICA算法应用于运动想象脑电信号的识别中,并根据ICA算法的特点设计了数据处理的实验流程.针对2003年国际BCI竞赛data set III中通道数较少的问题,提出一种通道扩维算法,在不增加采集电极数的情况下,可成倍地增加相似通道的数量,提供更丰富的脑电信息.将通道扩维与FastICA算法相融合应用于国际BCI竞赛数据的处理中,实验结果表明通道扩维算法提升了FastICA算法的分类准确率,同时FastICA算法处理信息速度较快的特点也弥补了通道扩维算法耗时较多的缺陷. 展开更多
关键词 独立成分分析 负熵 通道扩维 脑机接口
在线阅读 下载PDF
A User-Friendly SSVEP-Based BCI Using Imperceptible Phase-Coded Flickers at 60Hz 被引量:1
15
作者 Lu Jiang Weihua Pei Yijun Wang 《China Communications》 SCIE CSCD 2022年第2期1-14,共14页
A brain-computer interface(BCI)system based on steady-state visual evoked potentials(SSVEP)was developed by four-class phase-coded stimuli.SSVEPs elicited by flickers at 60Hz,which is higher than the critical fusion f... A brain-computer interface(BCI)system based on steady-state visual evoked potentials(SSVEP)was developed by four-class phase-coded stimuli.SSVEPs elicited by flickers at 60Hz,which is higher than the critical fusion frequency(CFF),were compared with those at 15Hz and 30Hz.SSVEP components in electroencephalogram(EEG)were detected using task related component analysis(TRCA)method.Offline analysis with 17 subjects indicated that the highest information transfer rate(ITR)was 29.80±4.65bpm with 0.5s data length for 60Hz and the classification accuracy was 70.07±4.15%.The online BCI system reached an averaged classification accuracy of 87.75±3.50%at 60Hz with 4s,resulting in an ITR of 16.73±1.63bpm.In particular,the maximum ITR for a subject was 80bpm with 0.5s at 60Hz.Although the BCI performance of 60Hz was lower than that of 15Hz and 30Hz,the results of the behavioral test indicated that,with no perception of flicker,the BCI system with 60Hz was more comfortable to use than 15Hz and 30Hz.Correlation analysis revealed that SSVEP with higher signal-to-noise ratio(SNR)corresponded to better classification performance and the improvement in comfortableness was accompanied by a decrease in performance.This study demonstrates the feasibility and potential of a user-friendly SSVEP-based BCI using imperceptible flickers. 展开更多
关键词 brain-computer interface ELECTROENCEPHALOGRAM steady-state visual evoked potentials imperceptible flickers phase coding task related component analysis
在线阅读 下载PDF
An Algorithm for Idle-State Detection and Continuous Classifier Design in Motor-Imagery-Based BCI 被引量:3
16
作者 Yu Huang Qiang Wu Xu Lei Ping Yang Peng Xu De-Zhong Yao 《Journal of Electronic Science and Technology of China》 2009年第1期27-33,共7页
Abstract-The development of asynchronous brain-computer interface (BCI) based on motor imagery (M1) poses the research in algorithms for detecting the nontask states (i.e., idle state) and the design of continuo... Abstract-The development of asynchronous brain-computer interface (BCI) based on motor imagery (M1) poses the research in algorithms for detecting the nontask states (i.e., idle state) and the design of continuous classifiers that classify continuously incoming electroencephalogram (EEG) samples. An algorithm is proposed in this paper which integrates two two-class classifiers to detect idle state and utilizes a sliding window to achieve continuous outputs. The common spatial pattern (CSP) algorithm is used to extract features of EEG signals and the linear support vector machine (SVM) is utilized to serve as classifier. The algorithm is applied on dataset IVb of BCI competition Ⅲ, with a resulting mean square error of 0.66. The result indicates that the proposed algorithm is feasible in the first step of the development of asynchronous systems. 展开更多
关键词 brain-computer interface competition common spatial pattern continuous classifier idle state motor imagery support vector machine.
在线阅读 下载PDF
Semi-Supervised Learning Based on Manifold in BCI 被引量:1
17
作者 Ji-Ying Zhong Xu Lei De-Zhong Yao 《Journal of Electronic Science and Technology of China》 2009年第1期22-26,共5页
A Laplacian support vector machine (LapSVM) algorithm, a semi-supervised learning based on manifold, is introduced to brain-computer interface (BCI) to raise the classification precision and reduce the subjects' ... A Laplacian support vector machine (LapSVM) algorithm, a semi-supervised learning based on manifold, is introduced to brain-computer interface (BCI) to raise the classification precision and reduce the subjects' training complexity. The data are collected from three subjects in a three-task mental imagery experiment. LapSVM and transductive SVM (TSVM) are trained with a few labeled samples and a large number of unlabeled samples. The results confirm that LapSVM has a much better classification than TSVM. 展开更多
关键词 brain-computer interface manifold learning semi-supervised learning support vector machine.
在线阅读 下载PDF
BCI+VR Rehabilitation Design of Closed-Loop Motor Imagery Based on the Degree of Drug Addiction
18
作者 Xuelin Gu Banghua Yang +4 位作者 Shouwei Gao Honghao Gao Linfeng Yan Ding Xu Wen Wang 《China Communications》 SCIE CSCD 2022年第2期62-72,共11页
After abusing drugs for long,drug users will experience deteriorated self-control cognitive ability,and poor emotional regulation.This paper designs a closed-loop virtual-reality(VR),motorimagery(MI)rehabilitation tra... After abusing drugs for long,drug users will experience deteriorated self-control cognitive ability,and poor emotional regulation.This paper designs a closed-loop virtual-reality(VR),motorimagery(MI)rehabilitation training system based on brain-computer interface(BCI)(MI-BCI+VR),aiming to enhance the self-control,cognition,and emotional regulation of drug addicts via personalized rehabilitation schemes.This paper is composed of two parts.In the first part,data of 45 drug addicts(mild:15;moderate:15;and severe:15)is tested with electroencephalogram(EEG)and near-infrared spectroscopy(NIRS)equipment(EEG-NIRS)under the dual-mode,synchronous signal collection paradigm.Using these data sets,a dual-modal signal convolutional neural network(CNN)algorithm is then designed based on decision fusion to detect and classify the addiction degree.In the second part,the MIBCI+VR rehabilitation system is designed,optimizing the Filter Bank Common Spatial Pattern(FBCSP)algorithm used in MI,and realizing MI-EEG intention recognition.Eight VR rehabilitation scenes are devised,achieving the communication between MI-BCI and VR scene models.Ten subjects are selected to test the rehabilitation system offline and online,and the test accuracy verifies the feasibility of the system.In future,it is suggested to develop personalized rehabilitation programs and treatment cycles based on the addiction degree. 展开更多
关键词 drug addiction degree brain-computer interface motor imagery virtual reality drug addiction rehabilitation
在线阅读 下载PDF
A Study on SSVEP-Based BCI
19
作者 Zheng-Hua Wu De-Zhong Yao 《Journal of Electronic Science and Technology of China》 2009年第1期7-11,共5页
-Brain-computer interface (BCI) can help the deformity person finish some basic activities. In this paper, we concern some critical aspects of SSVEP based BCI, including stimulator selection, method of SSVEP extract... -Brain-computer interface (BCI) can help the deformity person finish some basic activities. In this paper, we concern some critical aspects of SSVEP based BCI, including stimulator selection, method of SSVEP extracting in a short time, stimulating frequency selection, and signal electrode selection. The conclusion is that the stimulator type should be based on the complexity of the BCI system, the method based on wavelet analysis is more valid than the power spectrum method in extracting the SSVEP in a short period, and the selections of stimulating frequency and electrode are important in designing a BCI system. These contents are meaningful for implementing a real SSVEP-based BCI. 展开更多
关键词 brain-computer interface electro-encephalogram steady-state visual evoked potential.
在线阅读 下载PDF
fMRI-BCI:a Review
20
作者 Da-Huan Li Qin Gao Wei-Shuai Lv Hua-Fu Chen 《Journal of Electronic Science and Technology of China》 2009年第1期78-81,共4页
Functional magnetic resonance imaging (fMRI) is a new tool for brain-computer interface (BCI). This paper presents an overview to fMRI-BCI. Our attention is mainly put on the methods of signal acquisition, signal ... Functional magnetic resonance imaging (fMRI) is a new tool for brain-computer interface (BCI). This paper presents an overview to fMRI-BCI. Our attention is mainly put on the methods of signal acquisition, signal preprocessing, and signal analysis of basic fMRI-BCI structure. The available softwares and the applications of fMRI-BCI are briefly introduced. At last, we suggest focusing on some technologies to make fMRI-BCI more perfect. 展开更多
关键词 brain-computer interface functional magnetic resonance imaging real-time signal processing.
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部