The primary goal of this work is to characterize the impact of weighting selection strategy and multistatic geometry on the multistatic radar performance. With the relationship between the multistatic ambiguity functi...The primary goal of this work is to characterize the impact of weighting selection strategy and multistatic geometry on the multistatic radar performance. With the relationship between the multistatic ambiguity function (AF) and the multistatie Cram6r-Rao lower bound (CRLB), the problem of calculating the multistatic AF and the multistatic CRLB as a performance metric for multistatic radar system is studied. Exactly, based on the proper selection of the system parameters, the multistatic radar performance can be significantly improved. The simulation results illustrate that the multistatic AF and the multistatic CRLB can serve as guidelines for future multistatic fusion rule development and multistatic radars deployment.展开更多
This paper derives the extended ambiguity function for a bistatic multiple-input multiple-output (MIMO) radar system, which includes the whole radar system parameters: geometric sensor configuration, waveforms, ran...This paper derives the extended ambiguity function for a bistatic multiple-input multiple-output (MIMO) radar system, which includes the whole radar system parameters: geometric sensor configuration, waveforms, range, range rate, target scattering and noise characteristics. Recent research indicates the potential pa- rameter estimate performance of bistatic MIMO radars. And this ambiguity function can be used to analyze the parameter estimate performance for the relationship with the Cramer-Rao bounds of the estimated parameters. Finally, some examples are given to demonstrate the good parameter estimate performance of the bistatic MIMO radar, using the quasi-orthogonal waveforms based on Lorenz chaotic systems.展开更多
基金Project(61271441)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0895)supported by the Program for New Century Excellent Talents in Universities of China
文摘The primary goal of this work is to characterize the impact of weighting selection strategy and multistatic geometry on the multistatic radar performance. With the relationship between the multistatic ambiguity function (AF) and the multistatie Cram6r-Rao lower bound (CRLB), the problem of calculating the multistatic AF and the multistatic CRLB as a performance metric for multistatic radar system is studied. Exactly, based on the proper selection of the system parameters, the multistatic radar performance can be significantly improved. The simulation results illustrate that the multistatic AF and the multistatic CRLB can serve as guidelines for future multistatic fusion rule development and multistatic radars deployment.
基金supported by the Innovation Project for Excellent Postgraduates of Hunan Province (CX2011B018)the Innovation Project for Excellent Postgraduates of National University of Defense Technology (B110402)
文摘This paper derives the extended ambiguity function for a bistatic multiple-input multiple-output (MIMO) radar system, which includes the whole radar system parameters: geometric sensor configuration, waveforms, range, range rate, target scattering and noise characteristics. Recent research indicates the potential pa- rameter estimate performance of bistatic MIMO radars. And this ambiguity function can be used to analyze the parameter estimate performance for the relationship with the Cramer-Rao bounds of the estimated parameters. Finally, some examples are given to demonstrate the good parameter estimate performance of the bistatic MIMO radar, using the quasi-orthogonal waveforms based on Lorenz chaotic systems.