期刊文献+

三点边值问题有限差分格式数值正解的存在性

Existence of Numerical Positive Solutions of Finite DifferenceScheme for Three-Point Boundary Value Problems
在线阅读 下载PDF
导出
摘要 利用临界点理论证明三点边值问题{-u″(x)=f(x,u(x)),x∈[a,b],u(a)=au(η),u(b)=0的有限差分格式{-Δ^(2)u(k-1)=f_(k)(u(k)),k∈[1,n]z,u(0)=au(η),u(u+1)=0非平凡解的存在性,并得到了上述连续问题数值相关解的存在性结果,其中:n≥3为正整数;α,η是常数,且[1-η/n+1]≠1;对任意的k∈[1,n]_(z),f_(k):R→R连续. By using the critical point theory,we prove the existence of the non-trivial solution of the finite difference scheme{-u″(x)=f(x,u(x)),x∈[a,b],u(a)=au(η),u(b)=0 for the three-point boundary value problem{-Δ^(2)u(k-1)=f_(k)(u(k)),k∈[1,n]z,u(0)=au(η),u(u+1)=0,and get the existence result of the numerical correlation solution for the above continuous problem,where n≥3 is a positive integer,α,ηare constan ts,andα[1-η/n+1]≠1,f_(k):R→R is continuous for any k∈[1,n]_(z).
作者 漆调艳 路艳琼 QI Tiaoyan;LU Yanqiong(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
出处 《吉林大学学报(理学版)》 北大核心 2025年第3期665-674,共10页 Journal of Jilin University:Science Edition
基金 国家自然科学基金地区基金(批准号:12361040) 甘肃省青年科技基金计划项目(批准号:24JRRA536)。
关键词 临界点理论 先验界 GREEN函数 收敛 数值解 critical point theorem a priori bounded Green function convergence numerical solution
作者简介 第一作者:漆调艳(2001-),女,汉族,硕士研究生,从事差分方程及其应用的研究,E-mail:2094324523@qq.com.通信作者:路艳琼(1986-),女,汉族,博士,教授,从事差分方程及其应用的研究,E-mail:luyq8610@126.com.
  • 相关文献

参考文献2

二级参考文献10

  • 1Agarwal, R.P., O'Regan, D., Wong, P.J.Y. Positive solutions of differential, difference and integral equations. Kluwer Academic Publishers. Boston, 1999.
  • 2Avery, R.I. A generalization of the Leggett-Williams fixed point theorem. Math. Sci. Res. Hot-line, 2: 9-14(1998).
  • 3Avery, R.I, Anderson, D.R. Fixed point theorem of cone expansion and compression of functional type. J. Diff. Equa. Appl., 8:1073-1083 (2002).
  • 4Avery, R.I., Henderson, J. Three sysmmetric positive solutions for a second order boundary-value problem. Appl. Math. Lett., 13:1-7 (2000).
  • 5Avery, R,I., Chyan, C.J., Henderson, J. Twin solutions of boundary value problems for ordinary differential equations and finite difference equations. Comput. Math. Appl., 42:695-704 (2001).
  • 6Avery, R.I., Peterson, A.C. Three positive fixed points of nonlinear operators on an ordered Banach space. Comput. Math. Appl., 208:313-322 (2001).
  • 7Bai, Z.B., Wang, Y.F., Ge, W.G. Triple positive solutions for a class of two-point boundary-value problems. E. J. Diff. Equa., 6:1-8 (2004).
  • 8Baiand, Z.B, Ge, W.G. Existence of three positive solutions for some second-order boundary value problems. Comput. Math. Appl., 48:699-707 (2004).
  • 9R.W.Leggett and L.R.Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J., 28:673-688 (1979).
  • 10Liu, Z.L., Li, F.Y. Multiple positive solutions of nonlinear two point boundary-value problem. J. Math. Anal Appl., 203:1117-1126 (1996).

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部