期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
基于SARIMA-SVM模型的季节性PM_(2.5)浓度预测
1
作者 宋英华 徐亚安 张远进 《计算机工程》 北大核心 2025年第1期51-59,共9页
空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARI... 空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARIMA-SVM)融合模型。该融合模型为串联型融合模型,将数据拆分为线性部分与非线性部分。SARIMA模型在差分自回归滑动平均(ARIMA)模型的基础上增加了季节性因素提取参数,能有效分析PM_(2.5)浓度数据的季节性规律变化趋势,较好地预测数据未来的线性变化趋势。结合SVM模型对预测数据的残差序列进行优化,利用滑动步长预测法确定残差序列的最优预测步长,通过网格搜索确定最优模型参数,实现对PM_(2.5)浓度数据的长期预测,同时提高整体预测精度。通过对武汉市近5年的PM_(2.5)浓度监测数据进行分析,结果表明该融合模型的预测准确率相较于单一模型有很大提升,在相同的实验环境下比单一的ARIMA、Auto ARIMA、SARIMA模型分别提升了99%、99%、98%,稳定性也更好,为PM_(2.5)浓度预测研究提供了新的思路。 展开更多
关键词 季节性差分自回归滑动平均 支持向量机 融合模型 PM_(2.5)浓度 季节性预测
在线阅读 下载PDF
模型和数据联合驱动的ARIMA-IDSSA-LSSVM建筑安全事故预测
2
作者 曹红梅 陈元 《自然灾害学报》 北大核心 2025年第2期129-139,共11页
针对传统单一模型在解决建筑安全事故预测问题存在精度低等问题,考虑模型和数据联合驱动方式,提出一种结合差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和改进的自适应樽海鞘优化最小二乘支持向量机(improv... 针对传统单一模型在解决建筑安全事故预测问题存在精度低等问题,考虑模型和数据联合驱动方式,提出一种结合差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和改进的自适应樽海鞘优化最小二乘支持向量机(improved adaptive salp swarm algorithm optimized least squares support vector machine,IDSSA-LSSVM)的组合预测模型。首先利用ARIMA模型获得时序数据中线性部分,利用IDSSA-LSSVM模型分析ARIMA模型获得的残差,获得时序数据中非线性部分;然后通过线性部分和非线性部分相加获得最终组合预测值;最后通过2010—2020年房屋市政工程生产安全事故数据对所提算法进行验证。结果表明,所提预测模型在E_(rmse)上较其他算法分别下降73.73%、77.21%、46.09%、46.80%、78.19%,在E_(mae)上较其他算法分别下降74.20%、77.44%、48.15%、48.85%、77.50%,在E_(mape)上较其他算法分别下降84.95%、87.77%、75.97%、88.49%、80.27%。在不同规模的数据集下,文中算法在E_(rmse)指标下均最优。同时能够通过预测未来阶段事故,提供辅助决策。表明ARIMA-SSA-LSSVM组合模型能够充分挖掘建筑安全事故数据的隐藏信息,在准确性、泛化性和应用性3个角度均表现不错,优势明显。 展开更多
关键词 建筑安全 事故预测 联合驱动 差分自回归移动平均模型 支持向量机
在线阅读 下载PDF
基于ARIMA-SVM模型的翅片管蒸发器结霜性能预测 被引量:4
3
作者 黄彬彬 谷波 任能 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第10期1622-1626,1631,共6页
针对翅片管蒸发器结霜过程混杂着复杂的线性和非线性特征且测试数据受噪声干扰大,使用单一的模型无法对其性能进行预测的难题,建立了基于求和自回归移动平均(Autoregressive Integrated Moving Average,ARIMA)和支持向量机(Support Vect... 针对翅片管蒸发器结霜过程混杂着复杂的线性和非线性特征且测试数据受噪声干扰大,使用单一的模型无法对其性能进行预测的难题,建立了基于求和自回归移动平均(Autoregressive Integrated Moving Average,ARIMA)和支持向量机(Support Vector Machine,SVM)的翅片管蒸发器结霜性能组合预测模型.利用实验数据对模型进行了验证和评估,并与单一ARIMA模型和SVM模型做了对比分析.结果表明,基于ARIMA-SVM的组合预测模型能兼顾结霜过程的线性和非线性特征,具有良好的预测性能,并能够较精确地预测到翅片管蒸发器性能参数的转向点. 展开更多
关键词 翅片管蒸发器 蒸发器结霜 求和自回归移动平均 支持向量机 混合预测模型 转向点
在线阅读 下载PDF
一种新的基于ARIMA-SVM网络流量预测研究 被引量:10
4
作者 邵忻 《计算机应用研究》 CSCD 北大核心 2012年第5期1901-1903,共3页
研究网络流量预测精度问题,网络流量受多种因素的综合影响,其变化具有周期性、非线性和随机性等特点,将ARIMA模型和SVM模型相结合建立一种网络流量预测模型。采用ARIMA预测网络流量周期性和线性变化趋势;然后采用SVM对网络流量非线性和... 研究网络流量预测精度问题,网络流量受多种因素的综合影响,其变化具有周期性、非线性和随机性等特点,将ARIMA模型和SVM模型相结合建立一种网络流量预测模型。采用ARIMA预测网络流量周期性和线性变化趋势;然后采用SVM对网络流量非线性和随机性趋势进行拟合;最后将两者结果再次输入SVM进行融合,得到网络流量最终预测结果。采用具体网络流量数据对模型性能进行测试,仿真结果表明,ARIMA-SVM提高了网络流量预测精度,降低了预测误差,能更全面刻画网络流量变化规律。 展开更多
关键词 自回归滑动平均模型(ARIMA) 支持向量机(SVM) 网络流量 预测
在线阅读 下载PDF
ARIMA-SVM组合模型驱动下的瓦斯浓度预测研究 被引量:13
5
作者 范京道 黄玉鑫 +3 位作者 闫振国 李川 王春林 贺雁鹏 《工矿自动化》 北大核心 2022年第9期134-139,共6页
针对单一瓦斯预测模型挖掘矿井瓦斯浓度时间序列全部特征能力较弱的问题,提出了一种基于自回归滑动平均模型(ARIMA)和支持向量机(SVM)模型的组合预测模型,并采用该模型对瓦斯浓度进行预测。首先,分别应用ARIMA模型和SVM模型对实验数据... 针对单一瓦斯预测模型挖掘矿井瓦斯浓度时间序列全部特征能力较弱的问题,提出了一种基于自回归滑动平均模型(ARIMA)和支持向量机(SVM)模型的组合预测模型,并采用该模型对瓦斯浓度进行预测。首先,分别应用ARIMA模型和SVM模型对实验数据进行预测分析,得到2种单一模型预测结果。其次,结合自相关函数和偏自相关函数及贝叶斯准则,得到最优ARIMA模型为ARIMA(1,1,2),通过核函数等参数寻优,确立最优SVM模型,从而建立ARIMA-SVM组合模型。利用ARIMA模型处理瓦斯浓度时间序列的历史数据,得到相应的线性预测结果和残差序列,利用SVM模型进一步对数据残差序列中的非线性因素进行分析,得到非线性预测结果,将2个模型的预测结果进行组合,得到目标瓦斯时间序列最终预测结果。实验结果表明:① ARIMA-SVM组合模型预测结果与矿井实际数据的拟合度优于ARIMA模型和SVM模型。②相对于ARIMA模型、SVM模型,ARIMA-SVM组合模型的误差大幅度减小,且预测结果明显优于单一模型。③ ARIMA-SVM组合模型的平均绝对误差、平均绝对百分比误差及均方根误差均为最小,表明ARIMA-SVM组合模型预测精度更高。 展开更多
关键词 瓦斯浓度预测 瓦斯浓度时间序列 自回归滑动平均模型 支持向量机 arima-svm组合模型
在线阅读 下载PDF
犯罪量动态优化组合预测方法 被引量:4
6
作者 李明 薛安荣 +1 位作者 王富强 吴正寅 《计算机工程》 CAS CSCD 北大核心 2011年第17期274-275,278,共3页
单一预测模型在预测犯罪量时难以协调拟合和泛化关系,从而影响预测结果的准确性。针对以上问题,提出一种数据驱动的可动态优化组合预测方法。以分析自回归求和移动平均模型、向量自回归模型及支持向量机模型的优点为基础,使用后验概率... 单一预测模型在预测犯罪量时难以协调拟合和泛化关系,从而影响预测结果的准确性。针对以上问题,提出一种数据驱动的可动态优化组合预测方法。以分析自回归求和移动平均模型、向量自回归模型及支持向量机模型的优点为基础,使用后验概率为每个模型赋予权重,结合误差最小原则动态调整权重。实验结果表明,该方法具有较高的预测精度和稳定性,能满足短时犯罪量预测的需要。 展开更多
关键词 犯罪量预测 组合预测模型 支持向量机模型 向量自回归模型 自回归求和移动平均模型
在线阅读 下载PDF
基于ARIMA与SVM的国际铀资源价格预测 被引量:12
7
作者 郑荣 颜七笙 《计算机工程与应用》 CSCD 北大核心 2016年第1期146-150,共5页
由于国际铀资源价格时间序列数据的非线性性与非平稳性,使用单一的预测模型很难捕捉到其综合趋势。为了进一步提高模型的预测精度,建立了基于差分自回归移动平均(ARIMA)和支持向量机SVM的组合预测模型,并用PSO算法对SVM模型中的参数进... 由于国际铀资源价格时间序列数据的非线性性与非平稳性,使用单一的预测模型很难捕捉到其综合趋势。为了进一步提高模型的预测精度,建立了基于差分自回归移动平均(ARIMA)和支持向量机SVM的组合预测模型,并用PSO算法对SVM模型中的参数进行优化。将该方法应用于实际铀资源价格预测,并与单一的ARIMA模型和SVM模型进行比较。仿真实验结果表明,该组合预测模型实现了对铀资源价格数据更为准确的预测。 展开更多
关键词 差分自回归移动平均 支持向量机 组合预测 国际铀资源价格
在线阅读 下载PDF
基于混合模型的国际原油价格预测研究 被引量:12
8
作者 张金良 李德智 谭忠富 《北京理工大学学报(社会科学版)》 CSSCI 北大核心 2019年第1期59-64,共6页
由于国际原油价格的剧烈波动,使得准确的原油价格预测极具挑战。为此,提出一种基于变分模态分解、季节性差分自回归滑动平均模型和果蝇优化最小二乘支持向量机的混合模型。利用变分模态分解方法将国际原油价格序列分解成一系列模态分量... 由于国际原油价格的剧烈波动,使得准确的原油价格预测极具挑战。为此,提出一种基于变分模态分解、季节性差分自回归滑动平均模型和果蝇优化最小二乘支持向量机的混合模型。利用变分模态分解方法将国际原油价格序列分解成一系列模态分量;针对周期性和非线性特征分量,分别建立季节性差分自回归滑动平均模型和果蝇优化最小二乘支持向量机模型进行预测;将各分量的预测值求和作为最终的预测结果。实证研究结果表明:所提混合模型相较对比模型能够明显提高国际原油价格的预测精度。 展开更多
关键词 原油价格预测 变分模态分解 季节性差分自回归滑动平均模型 最小二乘支持向量机
在线阅读 下载PDF
基于组合模型的网络流量预测 被引量:6
9
作者 于静 王辉 《计算机工程与应用》 CSCD 2013年第8期92-95,共4页
网络流量预测是网络管理的基础,网络流量受到多种因素影响,具有周期性、时变性和非线性,传统单一线性模型ARIMA或非线性模型SVM均难以准确描述网络流量复杂变化规律,为此,提出一种网络流量组合预测模型(ARIMA-LSSVM)。采用ARIMA对网络... 网络流量预测是网络管理的基础,网络流量受到多种因素影响,具有周期性、时变性和非线性,传统单一线性模型ARIMA或非线性模型SVM均难以准确描述网络流量复杂变化规律,为此,提出一种网络流量组合预测模型(ARIMA-LSSVM)。采用ARIMA对网络流量进行预测,捕捉其周期性变化趋势,采用LSSVM对网络流量非线性变化趋势进行预测,同时采用遗传算法对LSSVM参数进行优化,采用LSSVM两种预测结果进行融合,得到网络流量的最终预测结果。仿真实验结果表明,相对于单一网络流量预测模型,ARIMA-LSSVM提高网络流量预测精度,更能全面刻画网络流量变化趋势。 展开更多
关键词 网络流量 差分自回归滑动平均模型 最小支持向量机 组合模型
在线阅读 下载PDF
基于时序分析的电网合并单元电平预测 被引量:2
10
作者 张朝辉 罗炜 +4 位作者 林康照 秦冠军 金岩磊 丁笠 周宇 《数据采集与处理》 CSCD 北大核心 2022年第5期1169-1178,共10页
合并单元设备监控依赖于现场工作人员记录、实践经验以及预设告警阈值,缺少对系统监视数据的分析和挖掘,不能实现设备状态预测。鉴于此,根据监视合并单元电平数据的时序性特征,将传统时序模型差分整合移动平均自回归(Autoregressive int... 合并单元设备监控依赖于现场工作人员记录、实践经验以及预设告警阈值,缺少对系统监视数据的分析和挖掘,不能实现设备状态预测。鉴于此,根据监视合并单元电平数据的时序性特征,将传统时序模型差分整合移动平均自回归(Autoregressive integrated moving average,ARIMA)和长短期记忆网络(Long short-term memory,LSTM)构建组合模型,并采用蛙跳算法(Shuffled frog leaping algorithm,SFLA)进行模型优化。优化后的模型应用在合并单元激光器监视的电平数据预测分析,将ARIMA-LSTM优化组合模型和单一模型进行对比,验证了组合模型比单一模型具有更高的准确度。进一步和其他组合模型做对比实验,实验结果表明,组合模型经过SFLA优化后均优于其他组合模型,能够更好挖掘数据中的隐藏信息和趋势,提高时序数据预测精度和故障排查效率。将SFLA优化的组合ARIMA-SVM模型和ARIMA-LSTM模型对比,实验结果表明,所提出的ARIMA-LSTM模型优于ARIMA-SVM模型,可以更好地分析和掌握设备状态信息,实现对合并单元设备的电平数据预测。 展开更多
关键词 合并单元 时序分析 差分整合移动平均自回归-支持向量机 长短期记忆网络 蛙跳算法
在线阅读 下载PDF
基于组合优化算法的短期风电功率预测 被引量:7
11
作者 孙海蓉 张鸽 王瑞珈 《华北电力大学学报(自然科学版)》 CAS 北大核心 2020年第1期33-41,共9页
针对风电功率的长记忆、大波动性特点,提出了一种短期风电功率组合预测算法。利用集合经验模式分解算法在风电功率序列分解过程中添加成对的正负噪声分量,得到的不同复杂度的子序列,提高信号重构精度和分解速度。风电功率子序列的线性... 针对风电功率的长记忆、大波动性特点,提出了一种短期风电功率组合预测算法。利用集合经验模式分解算法在风电功率序列分解过程中添加成对的正负噪声分量,得到的不同复杂度的子序列,提高信号重构精度和分解速度。风电功率子序列的线性分量应用自回归分数积分移动平均模型进行预测,风电功率子序列的非线性分量利用自回归分数积分移动平均模型的残差序列训练优化后的支持向量机模型来进行预测,最后组合得到风电功率预测结果。通过对国内某风电场风电功率数据进行验证,表明该组合预测模型的预测精度更高,且模型具有更好的适应性。 展开更多
关键词 集成经验模态分解 自回归分数积分移动平均模型 支持向量机 短期风电功率预测
在线阅读 下载PDF
支持向量机修正ARIMA误差的微博热点预测 被引量:4
12
作者 蒋玉婷 《计算机应用与软件》 CSCD 北大核心 2014年第9期187-190,共4页
微博热点预测是一类贫信息、小样本、不确定性的复杂预测问题。为了提高微博热点预测精度,提出一种基于支持向量机修正ARIMA误差的微博热点预测模型(ARIMA-SVM)。首先对微博数据进行预处理、提取主题构建网络微博热点时间序列,然后采用A... 微博热点预测是一类贫信息、小样本、不确定性的复杂预测问题。为了提高微博热点预测精度,提出一种基于支持向量机修正ARIMA误差的微博热点预测模型(ARIMA-SVM)。首先对微博数据进行预处理、提取主题构建网络微博热点时间序列,然后采用ARIMA建立网络微博热点预测模型,并采用支持向量机对ARIMA预测误差进行修正得到微博热点最终预测结果,最后模型性能进行仿真测试。结果表明,相对于传统预测模型,ARIMA-SVM提高了网络微博热点的预测精度,预测结果具有一定实用价值。 展开更多
关键词 网络微博热点 差分自回归移动平均模型 支持向量机 预测
在线阅读 下载PDF
基于小波变换的网络流量组合预测模型 被引量:2
13
作者 崔兆顺 《计算机工程与应用》 CSCD 2014年第10期92-95,100,共5页
为了提高网络流量的预测精度,利用小波变换、差分自回归移动平均模型和最小二乘支持向量机等优点,提出一种基于小波变换的网络流量预测模型(WA-ARIMA-LSSVM)。针对网络流量多尺度特性,首先对网络流量时间序列进行小波分解,然后分别采用... 为了提高网络流量的预测精度,利用小波变换、差分自回归移动平均模型和最小二乘支持向量机等优点,提出一种基于小波变换的网络流量预测模型(WA-ARIMA-LSSVM)。针对网络流量多尺度特性,首先对网络流量时间序列进行小波分解,然后分别采用差分自回归移动平均模型和最小二乘支持向量机对网络流量的高频和低频进行建模与预测,最后小波重构高频和低频的预测结果,并采用仿真实验对模型性能进行分析。结果表明,WA-ARIMA-LSSVM提高了网络流量的预测精度,可以更加准确地描述网络流量的非平稳变化趋势。 展开更多
关键词 网络流量 差分自回归滑动平均 最小二乘向量机 小波变换 组合预测
在线阅读 下载PDF
基于模糊信息粒化的矿业安全生产态势区间预测 被引量:2
14
作者 吴孟龙 叶义成 +3 位作者 胡南燕 王其虎 李文 江慧敏 《中国安全科学学报》 CAS CSCD 北大核心 2021年第9期119-127,共9页
为提高矿业安全生产态势的预测精度,针对单一预测模型对非平稳非线性时间序列预测精度低、模型选择困难等问题,提出一种基于模糊信息粒化(FIG)的矿业安全生产态势区间预测模型。首先,将矿业安全生产态势时间序列映射为L、R、U等3个粒化... 为提高矿业安全生产态势的预测精度,针对单一预测模型对非平稳非线性时间序列预测精度低、模型选择困难等问题,提出一种基于模糊信息粒化(FIG)的矿业安全生产态势区间预测模型。首先,将矿业安全生产态势时间序列映射为L、R、U等3个粒化参数序列;然后,采用差分自回归滑动平均(ARIMA)模型预测模糊粒子序列中的线性部分,得到非线性残差序列;最后,将非线性的残差序列作为输入变量建立支持向量机(SVM)模型,将ARIMA模型的预测结果与SVM模型的残差序列预测值叠加,得到矿业安全生产态势时间序列的区间预测值。结果表明:用21组测试集样本验证基于FIG的区间预测模型的精度,得到L、R、U参数值的平均相对误差分别为10.834 57%、20.207 90%、0.651 97%;基于FIG的矿业安全生产态势区间预测模型拟合效果优于ARIMA和SVM,精确度较高且区间范围较为合理。 展开更多
关键词 差分自回归滑动平均(ARIMA) 模糊信息粒化(FIG) 支持向量机(SVM) 矿业安全生产态势 区间预测
在线阅读 下载PDF
基于ARIMA、LS-SVM和BP神经网络组合模型的航空运输飞行事故征候预测 被引量:16
15
作者 梁文娟 李雪艳 《安全与环境工程》 CAS 北大核心 2018年第1期130-136,共7页
应用差分自回归移动平均模型(ARIMA)、最小二乘支持向量机模型(LS-SVM)和BP神经网络模型(BPNN)的组合模型,对某航空公司运输的月度飞行事故征候万时率进行预测分析。首先,利用2008—2016年某航空公司的事故征候、飞行小时、航空器数量... 应用差分自回归移动平均模型(ARIMA)、最小二乘支持向量机模型(LS-SVM)和BP神经网络模型(BPNN)的组合模型,对某航空公司运输的月度飞行事故征候万时率进行预测分析。首先,利用2008—2016年某航空公司的事故征候、飞行小时、航空器数量、原油价格等历史数据建立ARIMA模型,应用SPSS软件进行模型拟合,获取飞行事故征候万时率的线性部分;然后,利用LS-SVM和BP神经网络建模,获取飞行事故征候万时率的非线性部分;最后,利用DS证据理论,实现三者的融合,获得ARIMA+LS-SVM+BPNN组合模型,利用组合模型对2017年1至3月该航空公司的月度飞行事故征候万时率进行预测,并用实际数据进行了验证。结果表明:组合模型较好地拟合了飞行事故征候万时率的历史序列,并获得了较高的预测精度;组合模型的短期(3个月)预测值与该航空公司飞行事故征候万时率的变化趋势完全一致,且预测精确度可接受。该研究可为航空公司安全与运行的趋势分析与判断提供数据依据,也可为航空公司制定针对性的飞行事故征候防控方案提供帮助。 展开更多
关键词 飞行事故征候万时率 组合模型 差分自回归移动平均模型 最小二乘支持向量机模型 BP神经网络模型 航空安全
在线阅读 下载PDF
基于SARIMA-GRNN-SVM的短期商业电力负荷组合预测方法 被引量:21
16
作者 徐晶 迟福建 +3 位作者 葛磊蛟 李娟 张梁 羡一鸣 《电力系统及其自动化学报》 CSCD 北大核心 2020年第2期85-91,共7页
针对短期商业电力负荷预测准确性与周期难以满足现有电力现货市场的问题,提出了一种基于SARIMAGRNN-SVM(seasonal autoregressive integrated moving average-generalized regression neural network-support vector machine)的商业电... 针对短期商业电力负荷预测准确性与周期难以满足现有电力现货市场的问题,提出了一种基于SARIMAGRNN-SVM(seasonal autoregressive integrated moving average-generalized regression neural network-support vector machine)的商业电力负荷组合预测模型。首先,对商业电力负荷变化的周期规律与随机因素的复杂影响进行了分析;然后,结合以上分析,选用SARIMA和GRNN为单一预测模型对商业电力负荷进行预测,并利用SVM进行组合,实现日前商业电力负荷预测;最后,通过某商业综合体的电力负荷数据进行验证。所提组合预测模型较单一预测模型拥有更优的预测精度与鲁棒性,可以为短期商业电力负荷预测提供借鉴。 展开更多
关键词 商业电力负荷 短期预测 季节自回归差分移动平均模型 广义回归神经网络 支持向量机
在线阅读 下载PDF
蚁群算法分配权重的燃气日负荷组合预测模型 被引量:7
17
作者 周洲 焦文玲 +1 位作者 任乐梅 田兴浩 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2021年第6期177-183,共7页
为适应城镇燃气日负荷随机性和多变性的特点,克服特定时刻单一负荷预测模型存在实际应用局限性的问题,将5种评价准则用于组合预测前剔除冗余模型,提出了一种建立变全重组合预测模型的方法,通过蚁群算法确定分配权重的组合预测模型,使得... 为适应城镇燃气日负荷随机性和多变性的特点,克服特定时刻单一负荷预测模型存在实际应用局限性的问题,将5种评价准则用于组合预测前剔除冗余模型,提出了一种建立变全重组合预测模型的方法,通过蚁群算法确定分配权重的组合预测模型,使得在一个时段上的燃气日负荷预测精度好于各单一模型.首先对包含诸多随机和模糊等不确定因素的城镇燃气日负荷时变系统和各预测模型特点进行分析;然后确定岭回归分析(Ridge)、差分自回归积分滑动平均模型(ARIMA)、支持向量机回归(SVR)、极端梯度提升树(XGB)共4类单项日负荷预测模型,结合城镇燃气日负荷和模型的特点,分别给出每个模型各项参数的设置和模型的输入向量;用平均相对误差、均方根误差、灰色关联度、相关系数、Theil不等系数为评价准则计算出的综合评价指标剔除冗余模型,最后建立了蚁群算法权重分配的组合预测模型.预测实例表明,蚁群算法分配权重的燃气日负荷组合预测模型长期的综合预测效果要优于任意单项模型,相比于单一模型而言,组合预测模型的稳定性和容错率更高,具备较强的泛化能力. 展开更多
关键词 城镇燃气日负荷 组合预测 岭回归 差分自回归积分滑动平均 支持向量机回归 极端梯度提升树 蚁群算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部