期刊文献+
共找到191篇文章
< 1 2 10 >
每页显示 20 50 100
Artificial Neural Network Applied to Quality Diagnosis
1
作者 Yang Xu(Shandong Architectural and Civil Engineering Institute, Jinan 250014, P. R. ChinaWang Xingyuan(Shandong University of Technology, Jinan 250061, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1997年第2期73-80,共8页
In this paper, we first make a brief review on the fundamental properties of artificial neural networks (ANN) and the basic models, and explore emphatically some potential application of artificial neural networks in ... In this paper, we first make a brief review on the fundamental properties of artificial neural networks (ANN) and the basic models, and explore emphatically some potential application of artificial neural networks in the area of product quality diagnosis, prediction and control, state supervision and classification, factor recognition, and expert system based diagnosis, then set up the ANN models and expert system for quality forecasting, monitoring and diagnosing. We point out that combining ANN with other techniques will have the broad development and application of perspectives. Finally, the paper gives out some practical applications for the models and the system. 展开更多
关键词 artificial neural network (ANN) Quality diagnosis pattern recognition Expert system.
在线阅读 下载PDF
基于人工智能的散打项目动作识别与自动评分方法研究 被引量:1
2
作者 孙文芳 吴泳锟 +2 位作者 林承德 徐永峰 李嘉裕 《体育学研究》 北大核心 2025年第3期119-128,共10页
目的:针对散打技术动作复杂,评分难度高的特点,提出基于人工智能的散打动作智能评分方法,以提高比赛中动作识别与评分的准确性。方法:收集2015—2024年间发布于抖音、快手等网络平台上的全国武术散打锦标赛、全国武术散打冠军赛和全运... 目的:针对散打技术动作复杂,评分难度高的特点,提出基于人工智能的散打动作智能评分方法,以提高比赛中动作识别与评分的准确性。方法:收集2015—2024年间发布于抖音、快手等网络平台上的全国武术散打锦标赛、全国武术散打冠军赛和全运会武术散打比赛视频,构建并标注了散打动作数据集。在此基础上,结合图卷积网络(Graph Convolutional Network,GCN)PoseSAGE模型,加入残差连接,构建了改进模型PoseSAGERES,并开展了与PoseGNN、PoseSAGE模型的对比实验。实验结果表明,PoseSAGERES模型在小规模数据集上实现了73.76%的分类准确率,显著优于其他模型。一致性分析显示,该方法与人工评判结果具有良好一致性,体现出在散打动作智能评分中的应用潜力。研究证实了基于人工智能的散打智能评分方法的有效性,以及残差链接机制在提升复杂动作识别准确率方面的促进作用,为散打动作的自动化分析与智能评分提供了创新性解决方案。未来的研究将着力于扩展数据集规模,丰富动作类别,进一步优化模型性能与泛化能力。 展开更多
关键词 散打 人工智能 动作识别 智能评分 图卷积神经网络模型
在线阅读 下载PDF
基于卷积神经网络建立中药材自动识别的人工智能模型及应用程序 被引量:3
3
作者 王甘红 张子豪 +3 位作者 奚美娟 夏开建 周燕婷 陈健 《中国全科医学》 北大核心 2025年第9期1128-1136,共9页
背景传统中药材检测手段依赖主观经验,难以满足中药材在准确分类与鉴别方面的需求。目的基于卷积神经网络(CNN)开发一款能够自动识别163种中药材的人工智能模型及电脑端应用程序。方法2020年1月—2024年6月,采集了两个中药材数据集进行... 背景传统中药材检测手段依赖主观经验,难以满足中药材在准确分类与鉴别方面的需求。目的基于卷积神经网络(CNN)开发一款能够自动识别163种中药材的人工智能模型及电脑端应用程序。方法2020年1月—2024年6月,采集了两个中药材数据集进行深度学习模型的训练、验证和测试,共包含163种中药材。通过准确率、灵敏度、特异度、精确率、受试者工作特征(ROC)曲线下面积(AUC)、F1分数等指标来衡量CNN模型的性能。在模型训练完成后,基于PyQt5技术开发了一款应用程序,供临床便携使用。结果本研究共纳入了276767张图像,开发了EfficientNetB0、ResNet50、MobileNetV3、VGG19和ResNet185种模型,通过性能比较,EfficientNet_B0模型在验证集上取得了最高的准确率(99.0%)和AUC(0.9942),被选为最佳模型。在测试集上,最佳模型对所有中药类别识别的准确率为99.0%、灵敏度为99.0%、特异度为100.0%、AUC为1.0,展现出良好的性能。结论基于卷积神经网络开发的深度学习模型能够快速准确地识别163种中药材,借助其高灵敏度的识别能力,为医师对中药材的鉴别提供有力辅助。 展开更多
关键词 中药材 模式识别 自动 中药药材学 应用程序 人工智能 PyQt5 卷积神经网络
在线阅读 下载PDF
基于耳周肌电信号的默念口令识别方法
4
作者 魏柏淳 姜峰 +3 位作者 张松涛 张琦 段锦楠 王修来 《智能系统学报》 北大核心 2025年第4期894-904,共11页
智能设备的普及促使可穿戴人机交互技术需求日益增加。为提高用户接受度,人机交互技术对交互易用性与隐蔽性要求较高。本文提出基于耳周肌电信号的默念口令识别方法。该方法易于与集成生理电采集的耳机设备结合,实现无声操控智能设备,... 智能设备的普及促使可穿戴人机交互技术需求日益增加。为提高用户接受度,人机交互技术对交互易用性与隐蔽性要求较高。本文提出基于耳周肌电信号的默念口令识别方法。该方法易于与集成生理电采集的耳机设备结合,实现无声操控智能设备,减少社交尴尬。具体地,本文首先确定并构建口令经验原则,筛选最优口令集。其次,根据单通道信噪比和分类准确率选择最优耳周传感器位置。再次,提出基于CNN-Transformer结构的识别模型构建耳周肌电信号与默念口令的时空映射。最后,大量实验评估方法可行性和稳定性。结果表明,本文方法平均准确率91.18%,优于相关任务的先进模型,且在命令变形和头部运动下表现稳定。本文方法奠定了默念口令识别商业产品的技术基础。 展开更多
关键词 人工智能 模式识别 人机交互 神经人机接口 人体意图解码 默念口令识别 肌电信号处理 神经网络
在线阅读 下载PDF
基于改进YOLO v10的牛只种类与行为识别
5
作者 高嵩 杨景峰 许德龙 《华南农业大学学报》 北大核心 2025年第6期832-842,共11页
【目的】实现精准养殖中牛只活动状态的实时监控,助力养殖户及时识别牛只异常行为,并为牛只的饲料分配、疾病监测及繁殖管理提供支持。【方法】本研究将YOLO v10模型改进为LDCM-YOLO v10n,并基于此对牛只种类及行为进行检测。具体改进如... 【目的】实现精准养殖中牛只活动状态的实时监控,助力养殖户及时识别牛只异常行为,并为牛只的饲料分配、疾病监测及繁殖管理提供支持。【方法】本研究将YOLO v10模型改进为LDCM-YOLO v10n,并基于此对牛只种类及行为进行检测。具体改进如下:首先,在YOLO v10的Backbone端采用C2f-LSKA结构,以增强模型的特征提取能力;其次,引入DySample上采样算子,旨在有效捕捉图像的细微变化与密集语义信息,规避传统上采样方法中存在的图像模糊及感受野受限问题;同时,将YOLO v10中的PSA替换为CloFormer注意力机制,从而更精准地区分牛只特征与背景噪声,并提升小目标识别精度;此外,加入多尺度空洞注意力机制(Multiscale dilated attention mechanism,MSDA),以增强感受野范围内各尺度的聚合语义信息,同时有效减少自注意力机制的冗余;最后,采用Inner-IoU损失函数,解决普通IoU损失函数无法根据目标尺度灵活调整损失计算的问题。【结果】在牛只行为数据集上,LDCM-YOLO v10n模型的mAP@0.50较YOLO v3、YOLO v5、YOLO v6、YOLO v8n、YOLO v9及YOLO v10n模型分别提升15.4、10.7、12.0、8.4、7.9和5.1个百分点;在牛只种类数据集上,LDCM-YOLO v10n模型的mAP@0.50较上述模型分别提升32.4、11.9、10.4、9.5、9.0和6.4个百分点。【结论】LDCM-YOLO v10n模型在牛只行为与种类检测中表现优异,为精准养殖提供了强有力的技术支撑。 展开更多
关键词 卷积神经网络 图像识别 YOLO v10模型 人工智能
在线阅读 下载PDF
YOLO神经网络在急性主动脉综合征影像学诊断及鉴别诊断中的应用价值
6
作者 康梦阳 赵洋 +2 位作者 池烽 李尤 田红燕 《西安交通大学学报(医学版)》 北大核心 2025年第2期317-322,共6页
目的建立急性主动脉综合征(acute aortic syndrome,AAS)计算机断层扫描血管造影(computed tomography angiography,CTA)图像的人工智能(artificial intelligence,AI)诊断系统,并评价其对AAS诊断及疾病亚组间鉴别诊断的效能。方法收集201... 目的建立急性主动脉综合征(acute aortic syndrome,AAS)计算机断层扫描血管造影(computed tomography angiography,CTA)图像的人工智能(artificial intelligence,AI)诊断系统,并评价其对AAS诊断及疾病亚组间鉴别诊断的效能。方法收集2016年6月至2022年6月于西安交通大学第一附属医院周围血管科确诊为AAS患者的CTA图像序列,主要包括主动脉夹层(aortic dissection,AD)、壁内血肿(intramural hematoma,IMH)和穿透性动脉粥样硬化性溃疡(penetrating atherosclerotic ulcer,PAU)。经过严格的纳入和排除标准,最终截取并筛选有效断层图像2057张。以正常人主动脉CTA图像为对照组,通过YOLO v7神经网络对AAS患者的CTA图像进行诊断和亚组间的鉴别诊断,并评价诊断效能。结果基于YOLO v7网络构建的智能诊断系统可有效识别AAS患者,灵敏度为98.72%,特异度为83.10%,阳性预测值97.82%,阴性预测值为89.40%,总准确度达96.92%。对AD、IMH及PAU疾病亚组间鉴别诊断的总准确率达85.58%。该系统对于AAS的诊断结果总准确率高于疾病亚组间鉴别诊断结果(P<0.05)。结论基于YOLO v7构建的AAS智能诊断系统可满足疾病诊断的标准,但对于AAS疾病各亚组间的鉴别诊断,仍需要更大的图像数据库和深度学习网络进一步研究。 展开更多
关键词 人工智能(AI) YOLO神经网络 急性主动脉综合征(AAS) 图像识别 诊断模型
在线阅读 下载PDF
基于拓扑数据分析与卷积神经网络的特征融合方法
7
作者 杨含 秦广军 +3 位作者 刘子源 胡永庆 刘光南 戴庆龙 《深圳大学学报(理工版)》 北大核心 2025年第5期624-630,共7页
针对卷积神经网络(convolutional neural networks,CNN)难以捕获和利用复杂高维数据的多维结构信息,限制了其特征学习能力的问题,提出一种融合了拓扑数据分析(topological data analysis,TDA)与CNN的特征融合方法——TDA-CNN.该方法将CN... 针对卷积神经网络(convolutional neural networks,CNN)难以捕获和利用复杂高维数据的多维结构信息,限制了其特征学习能力的问题,提出一种融合了拓扑数据分析(topological data analysis,TDA)与CNN的特征融合方法——TDA-CNN.该方法将CNN捕获的数值分布特征与TDA提取的拓扑结构特征相融合,CNN通道负责提取数值分布特征,TDA通道专注于提取拓扑结构特征,然后,将这两类特征融合形成组合特征表示,并利用注意力机制自适应地学习每种特征的重要性权重,为后续全连接网络提供更全面的决策依据.在Intel Image、Gender Images和Chinese Calligraphy Styles by Calligraphers等数据集上的实验表明,TDA-CNN在改进特征聚类与识别关键特征方面表现出色,分别将基线模型VGG16、EfficientNet V2和DenseNet121的性能提升了21.89%、22.66%和8.26%,有效增强了模型的判别能力. 展开更多
关键词 人工智能 模式识别 计算机神经网络 拓扑数据分析 卷积神经网络 注意力机制 计算机图象处理
在线阅读 下载PDF
表面肌电手部动作识别的研究进展 被引量:4
8
作者 李振江 魏德健 +2 位作者 冯妍妍 于丰帆 马一凡 《计算机工程与应用》 CSCD 北大核心 2024年第3期29-43,共15页
表面肌电信号(surface electromyography,sEMG)是一种测量肌肉活动的非侵入式方法,蕴含着关联人体运动的丰富信息,可用于手部动作识别。基于sEMG手部动作识别是指通过分析手部肌肉的sEMG信号,实现对手部动作的分类和识别。在神经网络发... 表面肌电信号(surface electromyography,sEMG)是一种测量肌肉活动的非侵入式方法,蕴含着关联人体运动的丰富信息,可用于手部动作识别。基于sEMG手部动作识别是指通过分析手部肌肉的sEMG信号,实现对手部动作的分类和识别。在神经网络发展的推动下,sEMG在手部动作识别领域取得了显著进展,但sEMG面临着噪声大、稳定性差等缺陷,难以有效利用,给高精度手部动作识别模型的获取带来了巨大困难,阻碍了研究成果的转化应用。详细归纳了sEMG手部动作识别方法的研究进展;介绍了常用于动作识别领域的公开肌电数据集,并介绍了自测肌电数据集采集流程;根据研究方法不同将现有的sEMG手部动作识别模型分为基于机器学习的手部动作识别、基于深度学习的手部动作识别和基于混合网络结构的手部动作识别三类,分别对相关模型进行总结分析,对不足之处提出建议;最后对手部动作识别研究需要解决的问题和未来发展方向进行了展望。 展开更多
关键词 表面肌电信号(sEMG) 手部动作识别 人工神经网络 算法模型
在线阅读 下载PDF
基于人工神经网络的水平管道气液两相流流型识别算法研究 被引量:3
9
作者 姚鹏川 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第5期1040-1047,共8页
流型是研究流动过程中一个十分重要的水力学状态参数,传统流型识别方法一般采用观测手段,往往需要苛刻的实验观测条件,难以应用在工程中。本文利用人工神经网络黑匣子特性通过人工神经网络对从水平管道内气液两相流流型测量实验中获取... 流型是研究流动过程中一个十分重要的水力学状态参数,传统流型识别方法一般采用观测手段,往往需要苛刻的实验观测条件,难以应用在工程中。本文利用人工神经网络黑匣子特性通过人工神经网络对从水平管道内气液两相流流型测量实验中获取的数据进行学习,设计了一种无需使用直接观测手段而仅基于两相流速的流型识别的模型并进行了测试,效果良好,误差率低,提出了一种基于数据的流型识别方法。并对人工神经网络模型进行了神经网络结构无关性分析,研究了神经网络隐藏层神经元数对模型精度的影响。 展开更多
关键词 流型识别 人工神经网络 数据驱动方法
在线阅读 下载PDF
粒子群优化算法在电力系统中的应用 被引量:220
10
作者 袁晓辉 王乘 +1 位作者 张勇传 袁艳斌 《电网技术》 EI CSCD 北大核心 2004年第19期14-19,共6页
粒子群优化方法是一种基于群体智能的新型演化计算技术。它在函数优化、神经网络设计、分类、模式识别、信号处理、机器人技术等许多领域已取得了成功应用,但在电力系统中应用的研究起步较晚,关于它实际应用的报道尚不多见。文章较为全... 粒子群优化方法是一种基于群体智能的新型演化计算技术。它在函数优化、神经网络设计、分类、模式识别、信号处理、机器人技术等许多领域已取得了成功应用,但在电力系统中应用的研究起步较晚,关于它实际应用的报道尚不多见。文章较为全面地详述了粒子群优化方法在配电网扩展规划、检修计划、机组组合、负荷经济分配、最优潮流计算与无功优化控制、谐波分析与电容器配置、配电网状态估计、参数辨识、优化设计等方面应用的主要研究成果。随着粒子群优化理论研究的深入,它还将在电力市场竞价交易、投标策略以及电力市场仿真等领域发挥巨大的应用潜力。 展开更多
关键词 电力系统 配电网 最优潮流计算 无功优化 机组组合 谐波分析 电容器 粒子群优化 群体智能 机器人技术
在线阅读 下载PDF
局部放电灰度图象数学形态谱的研究 被引量:44
11
作者 刘云鹏 律方成 李成榕 《中国电机工程学报》 EI CSCD 北大核心 2004年第5期179-183,共5页
局部放电模式识别是判断电气设备绝缘状况和区分外部脉冲干扰的有效手段之一。数学形态学颗粒分析是一种十分有效的图像处理工具,主要用来处理灰度图像的粒度和形状特征,或者说通过数学形态谱以分析图像的纹理特征。提出了一种适用于局... 局部放电模式识别是判断电气设备绝缘状况和区分外部脉冲干扰的有效手段之一。数学形态学颗粒分析是一种十分有效的图像处理工具,主要用来处理灰度图像的粒度和形状特征,或者说通过数学形态谱以分析图像的纹理特征。提出了一种适用于局部放电模式识别的局部放电数学形态谱提取方法。该方法基于形态学颗粒分析理论,采用多尺度形态学“开”运算提取局部放电灰度图象的数学形态谱,并以此作为局部放电模式的特征向量。通过双隐层人工神经网络分类器实现放电模式识别。针对电力变压器内部放电和空气中放电设计了6种典型的放电模型,计算其形态谱,输入双隐层人工神经网络实现放电模式识别,识别结果表明了该方法的有效性。 展开更多
关键词 电气设备 局部放电 灰度图象 模式识别 数学形态谱 数学形态学 图象处理 纹理特征
在线阅读 下载PDF
基于人工神经网络的变压器绝缘模型放电模式识别的研究 被引量:36
12
作者 姜磊 朱德恒 +5 位作者 李福祺 谈克雄 覃刚力 金显贺 王昌长 T.C.Cheng 《中国电机工程学报》 EI CSCD 北大核心 2001年第1期21-24,共4页
分析了变压器绝缘的主要放电形式 ,设计了模拟变压器放电的 7种试验模型和 3种模拟空气中放电干扰的模型 ,进行了不同情况下模型的放电试验。使用数字化测量装置 ,取得了各种模型放电的放电量 相位信息。采用三维谱图提取放电指纹特征 ... 分析了变压器绝缘的主要放电形式 ,设计了模拟变压器放电的 7种试验模型和 3种模拟空气中放电干扰的模型 ,进行了不同情况下模型的放电试验。使用数字化测量装置 ,取得了各种模型放电的放电量 相位信息。采用三维谱图提取放电指纹特征 ,并用人工神经网络ANN来识别不同的放电类型。研究结果表明 ,人工神经网络对油纸变压器绝缘放电有足够的识别能力。 展开更多
关键词 变压器绝缘 局部放电 人工神经网络 模式识别
在线阅读 下载PDF
优化的BP神经网络分类器的设计与实现 被引量:32
13
作者 江虹 曾立波 胡继明 《计算机工程与应用》 CSCD 北大核心 2001年第5期122-125,共4页
文章从实用、经济和高效的角度出发,提出了一种优化BP神经网络分类器的设计与实现方案。它具有较好的模块性,可移殖性以及透明性。对于各种模式识别的情况,它都具有一定的实用和参考价值。同时提出了一种确定隐层节点数的新方法。结... 文章从实用、经济和高效的角度出发,提出了一种优化BP神经网络分类器的设计与实现方案。它具有较好的模块性,可移殖性以及透明性。对于各种模式识别的情况,它都具有一定的实用和参考价值。同时提出了一种确定隐层节点数的新方法。结果良好。 展开更多
关键词 人工神经网络 模式识别 BP算法 分类器 优化 设计
在线阅读 下载PDF
人工神经网络和机械故障诊断 被引量:47
14
作者 吴蒙 贡璧 何振亚 《振动工程学报》 EI CSCD 1993年第2期153-163,共11页
智能化诊断是现代故障诊断技术发展的主要趋势,人工神经网络技术的出现为这种智能化提供了一个全新的途径。本文首先简单介绍了人工神经网络的基本性能及几个重要模型,着重探讨了人工神经网络技术在机械故障诊断领域中预测与控制、工况... 智能化诊断是现代故障诊断技术发展的主要趋势,人工神经网络技术的出现为这种智能化提供了一个全新的途径。本文首先简单介绍了人工神经网络的基本性能及几个重要模型,着重探讨了人工神经网络技术在机械故障诊断领域中预测与控制、工况监测与故障分类诊断、模糊诊断和基于专家系统的故障诊断等几个主要方面的应用,指出人工神经网络技术与现有的信号处理、模式识别、模糊逻辑、专家系统等技术相结合,以解决故障信号分析与处理、故障模式识别以及故障论域专家知识的组织和推理等问题,必将加快智能化诊断发展的进程。可以预料:基于人工神经网络的故障诊断技术将具有广阔的发展与应用前景,并且随着VLsI 技术的发展,这一新技术必将广泛地应用于各种诊断实例。最后讨论了进一步值得研究的方向。 展开更多
关键词 神经网络 人工智能 故障诊断 机械故障
在线阅读 下载PDF
基于脉冲波形时域特征的局部放电识别 被引量:37
15
作者 郑重 谈克雄 +1 位作者 王猛 吴浩 《电工电能新技术》 CSCD 2001年第2期20-24,共5页
建立了一套数字化实时高速局部放电波形测量系统。由简单实验室模型和工业仿真模型取得了不同类型局部放电的脉冲电流波形 ,包括空气中和油中尖板电极放电 ,电机模型线棒内部气隙放电 ,线棒端部沿面放电。用分段的时域数据压缩法提取了... 建立了一套数字化实时高速局部放电波形测量系统。由简单实验室模型和工业仿真模型取得了不同类型局部放电的脉冲电流波形 ,包括空气中和油中尖板电极放电 ,电机模型线棒内部气隙放电 ,线棒端部沿面放电。用分段的时域数据压缩法提取了脉冲波形特征。采用分级的人工神经网络进行放电模式识别 。 展开更多
关键词 局部放电 脉冲波形 时域压缩 模式识别 人工神经网络 时域特征
在线阅读 下载PDF
一种基于神经网络覆盖构造法的模糊分类器 被引量:18
16
作者 叶少珍 张钹 +1 位作者 吴鸣锐 郑文波 《软件学报》 EI CSCD 北大核心 2003年第3期429-434,共6页
首先介绍了一种M-P模型几何表示,以及利用这种几何表示可将神经网络的训练问题转化为点集覆盖问题,并在此基础上分析了神经网络训练的一种几何方法.针对该方法可构造十分复杂的分类边界,但其时间复杂度很高.提出一种将神经网络覆盖算法... 首先介绍了一种M-P模型几何表示,以及利用这种几何表示可将神经网络的训练问题转化为点集覆盖问题,并在此基础上分析了神经网络训练的一种几何方法.针对该方法可构造十分复杂的分类边界,但其时间复杂度很高.提出一种将神经网络覆盖算法与模糊集合思想相结合的方法,该分类器可改善训练速度、减少覆盖的球领域数目,即减少神经网络的隐结点数目.同时模糊化方法可方便地为大规模模式识别问题提供多选结果.用700类手写汉字的识别构造一个大规模模式识别问题测试提出的方法,实验结果表明,该方法对于大规模模式识别问题很有潜力. 展开更多
关键词 神经网络 覆盖构造法 模糊分类器 模式识别 汉字识别
在线阅读 下载PDF
发电机局部放电的统计特征识别 被引量:22
17
作者 满玉岩 高文胜 +1 位作者 高凯 谈克雄 《电工技术学报》 EI CSCD 北大核心 2006年第4期41-45,共5页
介绍了一种利用二维谱图的形状统计特征进行放电模式识别的方法。利用发电机线棒工业仿真模型进行局部放电信号检测,放电信号来自四种不同的故障模式。分别使用基于距离的模式归类法和前馈网络进行模式识别,根据统计特征对放电模式的描... 介绍了一种利用二维谱图的形状统计特征进行放电模式识别的方法。利用发电机线棒工业仿真模型进行局部放电信号检测,放电信号来自四种不同的故障模式。分别使用基于距离的模式归类法和前馈网络进行模式识别,根据统计特征对放电模式的描述能力和两种识别方法的分类能力进行了分析比较。结果表明统计识别方法的分类效果是令人满意的。 展开更多
关键词 局部放电 模式识别 模式归类法 人工神经网络
在线阅读 下载PDF
基于RSOM树模型的机器学习原理与算法研究 被引量:11
18
作者 夏胜平 张乐锋 +3 位作者 虞华 张静 胡卫东 郁文贤 《电子学报》 EI CAS CSCD 北大核心 2005年第5期939-944,共6页
 机器学习和识别可归结于一个高速、有效地搜索非常大的样本空间问题,以实现对训练和识别样本的最佳拟合.对于复杂背景的模式样本集,同类型样本的独立同分布(i.i.d)特性通常难以保证,统计理论无法有效应用.本文将层次化思想和自组织映...  机器学习和识别可归结于一个高速、有效地搜索非常大的样本空间问题,以实现对训练和识别样本的最佳拟合.对于复杂背景的模式样本集,同类型样本的独立同分布(i.i.d)特性通常难以保证,统计理论无法有效应用.本文将层次化思想和自组织映射(SOM)神经网络相结合,采用递归实现技术实现了一种高效、高容量,能够自适应增长的模式分类树(RSOM树)生长方法,用于模式识别和机器学习的基本建模.通过对大量公用数据集的测试以及在实际的雷达目标识别系统中应用,方法有效性得到了证明. 展开更多
关键词 模式识别 分类树 神经网络 SOM RSOM 机器学习
在线阅读 下载PDF
质量控制图在线智能诊断分析系统 被引量:17
19
作者 乐清洪 滕霖 +1 位作者 朱名铨 王润孝 《计算机集成制造系统》 EI CSCD 北大核心 2004年第12期1583-1587,1599,共6页
在计算机集成制造系统环境下,为了有效实现工序质量控制,提出了质量控制图的在线智能诊断分析系统框架,它由控制图模式识别、参数估计、专家诊断分析系统和加工参数调整系统四个模块组成。在该系统中,采用了一种适用于模式识别与分类的... 在计算机集成制造系统环境下,为了有效实现工序质量控制,提出了质量控制图的在线智能诊断分析系统框架,它由控制图模式识别、参数估计、专家诊断分析系统和加工参数调整系统四个模块组成。在该系统中,采用了一种适用于模式识别与分类的新型神经网络模型———局部有监督特征映射网络,将其应用于该系统的控制图模式识别和参数估计中。仿真实验和应用实例表明,识别和分类结果与实际相符,并可以保证实时性。 展开更多
关键词 控制图 智能诊断 人工神经网络 模式识别 参数估计
在线阅读 下载PDF
基于遗传与BP混合算法神经网络预测模型及应用 被引量:21
20
作者 殷峻暹 陈守煜 邱菊 《大连理工大学学报》 CAS CSCD 北大核心 2002年第5期594-598,共5页
提出用遗传学习算法和权重调整 BP算法相结合的混合算法来训练模糊模式识别神经网络预测模型 ;即先通过遗传学习算法进行全局训练 ,再用权重调整 BP算法进行精确训练 ,使网络收敛速度加快和避免局部极小 .作为实例 ,以新疆雅马渡站的实... 提出用遗传学习算法和权重调整 BP算法相结合的混合算法来训练模糊模式识别神经网络预测模型 ;即先通过遗传学习算法进行全局训练 ,再用权重调整 BP算法进行精确训练 ,使网络收敛速度加快和避免局部极小 .作为实例 ,以新疆雅马渡站的实测径流资料和相应的前期 4个预报因子实测数据作为样本进行训练并用以预测雅马渡站的年径流量 .结果表明 。 展开更多
关键词 混合算法 神经网络预测模型 模糊模式识别 遗传学习算法 权重调整BP算法 人工神经网络 收敛速度 水文预报
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部