The temperature of proton exchange membrane fuel cell stack and the stoichiometric oxygen in cathode have relationship with the performance and life span of fuel cells closely. The thermal coefficients were taken as i...The temperature of proton exchange membrane fuel cell stack and the stoichiometric oxygen in cathode have relationship with the performance and life span of fuel cells closely. The thermal coefficients were taken as important factors affecting the temperature distribution of fuel cells and components. According to the experimental analysis, when the stoichiometric oxygen in cathode is greater than or equal to 1.8, the stack voltage loss is the least. A novel genetic algorithm was developed to identify and optimize the variables in dynamic thermal model of proton exchange membrane fuel cell stack, making the outputs of temperature model approximate to the actual temperature, and ensuring that the maximal error is less than 1 ℃. At the same time, the optimum region of stoichiometric oxygen is obtained, which is in the range of 1.8-2.2 and accords with the experimental analysis results. The simulation and experimental results show the effectiveness of the proposed algorithm.展开更多
Proton exchange membrane fuel cell (PEMFC) stack temperature and cathode stoichiometric oxygen are very important control parameters. The performance and lifespan of PEMFC stack are greatly dependent on the parameters...Proton exchange membrane fuel cell (PEMFC) stack temperature and cathode stoichiometric oxygen are very important control parameters. The performance and lifespan of PEMFC stack are greatly dependent on the parameters. So, in order to improve the performance index, tight control of two parameters within a given range and reducing their fluctuation are indispensable. However, control-oriented models and control strategies are very weak junctures in the PEMFC development. A predictive control algorithm was presented based on their model established by input-output data and operating experiences. It adjusts the operating temperature to 80 ℃. At the same time, the optimized region of stoichiometric oxygen is kept between 1.8?2.2. Furthermore, the control algorithm adjusts the variants quickly to the destination value and makes the fluctuation of the variants the least. According to the test results, compared with traditional fuzzy and PID controllers, the designed controller shows much better performance.展开更多
A neural network model and fuzzy neural network controller was designed to control the inner impedance of a proton exchange membrane fuel cell (PEMFC) stack. A radial basis function (RBF) neural network model was trai...A neural network model and fuzzy neural network controller was designed to control the inner impedance of a proton exchange membrane fuel cell (PEMFC) stack. A radial basis function (RBF) neural network model was trained by the input-output data of impedance. A fuzzy neural network controller was designed to control the impedance response. The RBF neural network model was used to test the fuzzy neural network controller. The results show that the RBF model output can imitate actual output well, the maximal error is not beyond 20 m-, the training time is about 1 s by using 20 neurons, and the mean squared errors is 141.9 m-2. The impedance of the PEMFC stack is controlled within the optimum range when the load changes, and the adjustive time is about 3 min.展开更多
The stoichiometric ratios and related regimes, which can promote anti-flooding of polymer electrolyte membrane fuel cell (PEMFC) with in-plate adverse-flow flow-field (IPAF), were investigated. Two flow combinatio...The stoichiometric ratios and related regimes, which can promote anti-flooding of polymer electrolyte membrane fuel cell (PEMFC) with in-plate adverse-flow flow-field (IPAF), were investigated. Two flow combinations, which are the simple and complex adverse-flow between plates (ABP) that can be realized by IPAF, were employed. Constant stoichiometric ratios examination indicates that the complex ABP could improve anti-flooding of PEMFC better in the medium (greater than 200 mA/cm2 and less than 1 000 mA/cm2) and high (greater than 1 000 mA/cm2) current densities than the simple ABP. More stoichiometric ratios were introduced to find the cathode critical stoichiometry. Under the condition of cathode critical stoichiometry, the maximal local relative humidity of both electrodes of complex ABP is equal to 100% and below while the anti-flooding of the cathode of simple ABP is not satisfactory in the medium and high current densities. Further study shows that the mechanism of fuel cell, which is the imerdependence between the electrodes effect, can make significant contribution to anti-flooding.展开更多
When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is...When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.展开更多
A practical method of estimation for the internal-resistance of polymer electrolyte membrane fuel cell (PEMFC) stack was adopted based on radial basis function (RBF) neural networks. In the training process, k-means c...A practical method of estimation for the internal-resistance of polymer electrolyte membrane fuel cell (PEMFC) stack was adopted based on radial basis function (RBF) neural networks. In the training process, k-means clustering algorithm was applied to select the network centers of the input training data. Furthermore, an equivalent electrical-circuit model with this internal-resistance was developed for investigation on the stack. Finally using the neural networks model of the equivalent resistance in the PEMFC stack, the simulation results of the estimation of equivalent internal-resistance of PEMFC were presented. The results show that this electrical PEMFC model is effective and is suitable for the study of control scheme, fault detection and the engineering analysis of electrical circuits.展开更多
基金Project (2003AA517020) supported by the National High-Technology Research Plan of China
文摘The temperature of proton exchange membrane fuel cell stack and the stoichiometric oxygen in cathode have relationship with the performance and life span of fuel cells closely. The thermal coefficients were taken as important factors affecting the temperature distribution of fuel cells and components. According to the experimental analysis, when the stoichiometric oxygen in cathode is greater than or equal to 1.8, the stack voltage loss is the least. A novel genetic algorithm was developed to identify and optimize the variables in dynamic thermal model of proton exchange membrane fuel cell stack, making the outputs of temperature model approximate to the actual temperature, and ensuring that the maximal error is less than 1 ℃. At the same time, the optimum region of stoichiometric oxygen is obtained, which is in the range of 1.8-2.2 and accords with the experimental analysis results. The simulation and experimental results show the effectiveness of the proposed algorithm.
基金Project (2003AA517020) supported by the National High-Tech Research and Development Program of China
文摘Proton exchange membrane fuel cell (PEMFC) stack temperature and cathode stoichiometric oxygen are very important control parameters. The performance and lifespan of PEMFC stack are greatly dependent on the parameters. So, in order to improve the performance index, tight control of two parameters within a given range and reducing their fluctuation are indispensable. However, control-oriented models and control strategies are very weak junctures in the PEMFC development. A predictive control algorithm was presented based on their model established by input-output data and operating experiences. It adjusts the operating temperature to 80 ℃. At the same time, the optimized region of stoichiometric oxygen is kept between 1.8?2.2. Furthermore, the control algorithm adjusts the variants quickly to the destination value and makes the fluctuation of the variants the least. According to the test results, compared with traditional fuzzy and PID controllers, the designed controller shows much better performance.
基金Project(2003AA517020) supported by the National High Technology Research and Development Program of China
文摘A neural network model and fuzzy neural network controller was designed to control the inner impedance of a proton exchange membrane fuel cell (PEMFC) stack. A radial basis function (RBF) neural network model was trained by the input-output data of impedance. A fuzzy neural network controller was designed to control the impedance response. The RBF neural network model was used to test the fuzzy neural network controller. The results show that the RBF model output can imitate actual output well, the maximal error is not beyond 20 m-, the training time is about 1 s by using 20 neurons, and the mean squared errors is 141.9 m-2. The impedance of the PEMFC stack is controlled within the optimum range when the load changes, and the adjustive time is about 3 min.
基金Project(20976095) supported by the National Natural Science Foundation of ChinaProject(2012CB215500) supported by the National Basic Research Program of China+1 种基金Project(20090002110074) supported by the Specialized Research Fund for the Doctoral Program of Higher Education, ChinaProjects(2012AA1106012, 2012AA053402) supported by the National Hi-tech Research and Development Program of China
文摘The stoichiometric ratios and related regimes, which can promote anti-flooding of polymer electrolyte membrane fuel cell (PEMFC) with in-plate adverse-flow flow-field (IPAF), were investigated. Two flow combinations, which are the simple and complex adverse-flow between plates (ABP) that can be realized by IPAF, were employed. Constant stoichiometric ratios examination indicates that the complex ABP could improve anti-flooding of PEMFC better in the medium (greater than 200 mA/cm2 and less than 1 000 mA/cm2) and high (greater than 1 000 mA/cm2) current densities than the simple ABP. More stoichiometric ratios were introduced to find the cathode critical stoichiometry. Under the condition of cathode critical stoichiometry, the maximal local relative humidity of both electrodes of complex ABP is equal to 100% and below while the anti-flooding of the cathode of simple ABP is not satisfactory in the medium and high current densities. Further study shows that the mechanism of fuel cell, which is the imerdependence between the electrodes effect, can make significant contribution to anti-flooding.
基金Supported by the Major Science and Technology Projects in Jilin Province and Changchun City(20220301010GX).
文摘When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.
基金Project (2003AA517020) supported by the National High-Tech Research and Development Program of China
文摘A practical method of estimation for the internal-resistance of polymer electrolyte membrane fuel cell (PEMFC) stack was adopted based on radial basis function (RBF) neural networks. In the training process, k-means clustering algorithm was applied to select the network centers of the input training data. Furthermore, an equivalent electrical-circuit model with this internal-resistance was developed for investigation on the stack. Finally using the neural networks model of the equivalent resistance in the PEMFC stack, the simulation results of the estimation of equivalent internal-resistance of PEMFC were presented. The results show that this electrical PEMFC model is effective and is suitable for the study of control scheme, fault detection and the engineering analysis of electrical circuits.