Cu/ZnO-based catalysts are widely employed for methanol synthesis via CO_(2) hydrogenation.The preparation procedure is sensitive to the particle size and interfacial structure,which are considered as potential active...Cu/ZnO-based catalysts are widely employed for methanol synthesis via CO_(2) hydrogenation.The preparation procedure is sensitive to the particle size and interfacial structure,which are considered as potential active centers influencing the rate of both methanol and CO formation.The particle size and the interaction between Cu and the support materials are influenced by the coprecipitation conditions,let alone that the mechanistic divergence remains unclear.In this work,a series of Cu/ZnO/ZrO_(2) catalysts were prepared via co-precipitation at different pH value and systematically characterized.The structure has been correlated with kinetic results to establish the structure-performance relationship.Kinetic analysis demonstrates that methanol synthesis follows a single-site Langmuir-Hinshelwood(L-H)mechanism,i.e.,Cu serves as the active site where CO_(2) and H_(2) competitively adsorb and react to form methanol.In contrast,CO formation proceeds via a dual-site L-H mechanism,where CO_(2) adsorbs onto ZnO and H_(2) onto Cu,with the reaction occurring at the Cu/ZnO interface.Therefore,for the direct formation of methanol,solely reducing the particle size of Cu would not be beneficial.展开更多
Hydrogen-enriched ironmaking presents a promising approach to mitigate coke consumption and carbon emission in blast furnace(BF)operations.This work investigated the relationship between the structural features of cok...Hydrogen-enriched ironmaking presents a promising approach to mitigate coke consumption and carbon emission in blast furnace(BF)operations.This work investigated the relationship between the structural features of cokes and their reactivity towards solution loss(SL),especially under hydrogen-enriched atmospheres.Six cokes were characterized,and their SL behaviors were examined under varying atmospheres to elucidate the effects of hydrogen enrichment.The results indicate that an increase in fixed carbon content leads to a decrease in the coke reactivity index(CRI)and an increase in coke strength after reaction(CSR),in the CO_(2) atmosphere,the CSR of coke increases from 35.76%−62.83%,while in the 90CO_(2)/10H_(2) atmosphere,the CSR of coke increases from 65.67%−84.09%.There is a good linear relationship between CRI and microcrystalline structure parameters of coke.Cokes with larger crystalline size,lower amorphous content,and smaller optical texture index(OTI)values show enhanced resistance to degradation and maintain structural integrity in BF.Kinetic analysis performed with the shifted-modified-random pore model(S-MRPM)reveals that alterations in pore structure and intrinsic mineral composition significantly influence the reaction rate.The introduction of a small amount of water vapor raises SL rates,whereas a minor addition of hydrogen(<10%)decelerates SL due to its incomplete conversion to water vapor and the reduced partial pressure of the gasifying agent.Thermodynamic calculations also indicate that the introduced hydrogen does not convert into the same fraction of water vapor.The shift from chemical reaction control to gas diffusion control as the rate-determining step with rising temperatures during SL process was confirmed,and the introduction of hydrogen does not notably alter SL behavior.This result demonstrated that introducing a small amount of hydrogen(<10%)can mitigate SL rates,thereby enhancing coke strength and reducing coke consumption and carbon emissions.展开更多
Objective Magnetoencephalography(MEG),a non-invasive neuroimaging technique,meticulously captures the magnetic fields emanating from brain electrical activity.Compared with MEG based on superconducting quantum interfe...Objective Magnetoencephalography(MEG),a non-invasive neuroimaging technique,meticulously captures the magnetic fields emanating from brain electrical activity.Compared with MEG based on superconducting quantum interference devices(SQUID),MEG based on optically pump magnetometer(OPM)has the advantages of higher sensitivity,better spatial resolution and lower cost.However,most of the current studies are clinical studies,and there is a lack of animal studies on MEG based on OPM technology.Pain,a multifaceted sensory and emotional phenomenon,induces intricate alterations in brain activity,exhibiting notable sex differences.Despite clinical revelations of pain-related neuronal activity through MEG,specific properties remain elusive,and comprehensive laboratory studies on pain-associated brain activity alterations are lacking.The aim of this study was to investigate the effects of inflammatory pain(induced by Complete Freund’s Adjuvant(CFA))on brain activity in a rat model using the MEG technique,to analysis changes in brain activity during pain perception,and to explore sex differences in pain-related MEG signaling.Methods This study utilized adult male and female Sprague-Dawley rats.Inflammatory pain was induced via intraplantar injection of CFA(100μl,50%in saline)in the left hind paw,with control groups receiving saline.Pain behavior was assessed using von Frey filaments at baseline and 1 h post-injection.For MEG recording,anesthetized rats had an OPM positioned on their head within a magnetic shield,undergoing two 15-minute sessions:a 5-minute baseline followed by a 10-minute mechanical stimulation phase.Data analysis included artifact removal and time-frequency analysis of spontaneous brain activity using accumulated spectrograms,generating spectrograms focused on the 4-30 Hz frequency range.Results MEG recordings in anesthetized rats during resting states and hind paw mechanical stimulation were compared,before and after saline/CFA injections.Mechanical stimulation elevated alpha activity in both male and female rats pre-and post-saline/CFA injections.Saline/CFA injections augmented average power in both sexes compared to pre-injection states.Remarkably,female rats exhibited higher average spectral power 1 h after CFA injection than after saline injection during resting states.Furthermore,despite comparable pain thresholds measured by classical pain behavioral tests post-CFA treatment,female rats displayed higher average power than males in the resting state after CFA injection.Conclusion These results imply an enhanced perception of inflammatory pain in female rats compared to their male counterparts.Our study exhibits sex differences in alpha activities following CFA injection,highlighting heightened brain alpha activity in female rats during acute inflammatory pain in the resting state.Our study provides a method for OPM-based MEG recordings to be used to study brain activity in anaesthetized animals.In addition,the findings of this study contribute to a deeper understanding of pain-related neural activity and pain sex differences.展开更多
In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantl...In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios.展开更多
Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two tim...Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two time-division based distributed sensor scheduling schemes are proposed to deal with ISI by scheduling sensors periodically and adaptively respectively. Extended Kalman filter (EKF) is used as the tracking algorithm in distributed manner. Simulation results show that the adaptive sensor scheduling scheme can achieve superior tracking accuracy with faster tracking convergence speed.展开更多
The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This pap...The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This paper develops a vibration isolation system of micro-manufacturing platform. The brains of many kinds of birds can isolate vibrations well, such as woodpecker’s brain. When a woodpecker pecks the wood at the speed as 1.6 times as the velocity of sound, its brain will tolerate the wallop 1 500 times of the weight of itself without any damage. The isolation mechanics and organic texture of woodpecker’s brain that has good isolation characteristics were studied. A structure model of vibration isolation system for the micro-manufacturing platform is established based on the bionics of the bird’s brain vibration isolation mechanism. In order to isolate effectively the high frequency vibrations from the ground, a rubber layer is used to isolate vibrations passively between the micro-manufacturing platform’s pedestal and the ground. This layer corresponds to the cartilage and muscles in the outer meninges of the bird’s brain. The active vibration isolation technique is adopted to isolate vibrations between the micro-manufacturing platform and the pedestal. Air springs are used as elastic components, which correspond to the interspaces between the outer meninges and the encephala of the bird’s brain. Actuators are made of giant magnetostrictive material, and it corresponds to the nerves and neural muscles linking the meninges and the encephala. The actuators and air springs are arranged vertically in parallel to make use of the giant magnetostrictive actuators effectively. The air springs support almost all weight of the micro-manufacturing platform and the giant magnetostrictive actuators support almost no weight. In order to realize high performance to isolate complex micro-vibration, the control method using a three-layer neural network is presented. This vibration control system takes into account the floor disturbance and the direct disturbance acting on the micro-manufacturing platform. The absolute acceleration of the micro-manufacturing platform is used as the performance index of vibration control. The performance of the control system is tested by numerical simulation. Simulation results show that the active vibration isolation system has good isolation performance against the floor disturbance and the direct disturbance acting on the micro-manufacturing platform in all the frequency range.展开更多
This article makes the first attempt in assessing the influence of active constrained layer damping(ACLD)treatment towards precise control of frequency responses of functionally graded skew-magneto-electroelastic(FGSM...This article makes the first attempt in assessing the influence of active constrained layer damping(ACLD)treatment towards precise control of frequency responses of functionally graded skew-magneto-electroelastic(FGSMEE)plates by employing finite element methods.The materials are functionally graded across the thickness of the plate in terms of modest power-law distributions.The principal equations of motion of FGSMEE are derived via Hamilton’s principle and solved using condensation technique.The effect of ACLD patches are modelled by following the complex modulus approach(CMA).Additionally,distinctive emphasis is laid to evaluate the influence of geometrical skewness on the attenuation capabilities of the plate.The accuracy of the current analysis is corroborated with comparison of previous researches of similar kind.Additionally,a complete parametric study is directed to understand the combined impacts of various factors like coupling fields,patch location,fiber orientation of piezoelectric patch in association with skew angle and power-law index.展开更多
The cell-type continuous electromagnetic radiation system is a demonstration device capable of generating high-power millimeter electromagnetic waves of a specific wavelength and observing their effects on living orga...The cell-type continuous electromagnetic radiation system is a demonstration device capable of generating high-power millimeter electromagnetic waves of a specific wavelength and observing their effects on living organisms.It irradiates a biological sample placed in a 30×30×50 cm^(3)cell with electromagnetic waves in the 3.15-mm-wavelength region(with an output of≥1 W)and analyzes the temperature change of the sample.A vacuum electronic device-based coupled-cavity backward-wave oscillator converts the electron energy of the electron beam into radiofrequency(RF)energy and radiates it to the target through an antenna,increasing the temperature through the absorption of RF energy in the skin.The system causes pain and ultimately reduces combat power.A cell-type continuous electromagnetic radiation system consisting of four parts—an electromagnetic-wave generator,a highvoltage power supply,a test cell,and a system controller—generates an RF signal of≥1 W in a continuous waveform at a 95-GHz center frequency,as well as a chemical solution with a dielectric constant similar to that of the skin of a living organism.An increase of 5°C lasting approximately 10 s was confirmed through an experiment.展开更多
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t...Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.展开更多
Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturba...Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.展开更多
This paper investigates the effect of porosity on active damping of geometrically nonlinear vibrations(GNLV)of the magneto-electro-elastic(MEE)functionally graded(FG)plates incorporated with active treatment constrict...This paper investigates the effect of porosity on active damping of geometrically nonlinear vibrations(GNLV)of the magneto-electro-elastic(MEE)functionally graded(FG)plates incorporated with active treatment constricted layer damping(ATCLD)patches.The perpendicularly/slanted reinforced 1-3 piezoelectric composite(1-3 PZC)constricting layer.The constricted viscoelastic layer of the ATCLD is modeled in the time-domain using Golla-Hughes-Mc Tavish(GHM)technique.Different types of porosity distribution in the porous magneto-electro-elastic functionally graded PMEE-FG plate graded in the thickness direction.Considering the coupling effects among elasticity,electrical,and magnetic fields,a three-dimensional finite element(FE)model for the smart PMEE-FG plate is obtained by incorporating the theory of layer-wise shear deformation.The geometric nonlinearity adopts the von K arm an principle.The study presents the effects of a variant of a power-law index,porosity index,the material gradation,three types of porosity distribution,boundary conditions,and the piezoelectric fiber’s orientation angle on the control of GNLV of the PMEE-FG plates.The results reveal that the FG substrate layers’porosity significantly impacts the nonlinear behavior and damping performance of the PMEE-FG plates.展开更多
The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on acti...The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.展开更多
A recently released XMM-Newton note revealed a significant calibration issue between nuclear spectroscopic telescope array(NuSTAR)and XMM-Newton European Photon Imaging Camera(EPIC)and provided an empirical correction...A recently released XMM-Newton note revealed a significant calibration issue between nuclear spectroscopic telescope array(NuSTAR)and XMM-Newton European Photon Imaging Camera(EPIC)and provided an empirical correction to the EPIC effective area.To quantify the bias caused by the calibration issue in the joint analysis of XMM-NuSTAR spectra and verify the effectiveness of the correction,in this work,we perform joint-fitting of the NuSTAR and EPIC-pn spectra for a large sample of 104 observation pairs of 44 X-ray bright active galactic nuclei(AGN).The spectra were extracted after requiring perfect simultaneity between the XMM-Newton and NuSTAR exposures(merging good time intervals(GTIs)from two missions)to avoid bias due to the rapid spectral variability of the AGN.Before the correction,the EPIC-pn spectra are systematically harder than the corresponding NuSTAR spectra by■subsequently yielding significantly underestimated cutoff energy E_(cut)and the strength of reflection component R when performing joint-fitting.We confirm that the correction is highly effective and can commendably erase the discrepancy in best-fitΓ,E_(cut),and R.We thus urge the community to apply the correction when joint-fitting XMM-NuSTAR spectra,but note that the correction is limited to 3–12 keV and therefore not applicable when the soft X-ray band data are included.Besides,we show that as merging GTIs from two missions would cause severe loss of NuSTAR net exposure time,in many cases,joint-fitting yields no advantage compared with utilizing NuSTAR data alone.Finally,We present a technical note on filtering periods of high background flares for XMM-Newton EPIC-pn exposures in the small window(SW)mode.展开更多
In the realm of aerial warfare,the protection of Unmanned Aerial Vehicles(UAVs) against adversarial threats is crucial.In order to balance the impact of response delays and the demand for onboard applications,this pap...In the realm of aerial warfare,the protection of Unmanned Aerial Vehicles(UAVs) against adversarial threats is crucial.In order to balance the impact of response delays and the demand for onboard applications,this paper derives three analytical game strategies for the active defense of UAVs from differential game theory,accommodating the first-order dynamic delays.The targeted UAV executes evasive maneuvers and launches a defending missile to intercept the attacking missile,which constitutes a UAVMissile-Defender(UMD) three-body game problem.We explore two distinct operational paradigms:the first involves the UAV and the defender working collaboratively to intercept the incoming threat,while the second prioritizes UAV self-preservation,with independent maneuvering away from potentially sacrificial engagements.Starting with model linearization and order reduction,the Collaborative Interception Strategy(CIS) is first derived via a linear quadratic differential game formulation.Building upon CIS,we further explore two distinct strategies:the Informed Defender Interception Strategy(IDIS),which utilizes UAV maneuvering information,and the Unassisted Defender Interception Strategy(UDIS),which does not rely on UAV maneuvering information.Additionally,we investigate the conditions for the existence of saddle point solutions and their relationship with vehicle maneuverability and response agility.The simulations demonstrate the effectiveness and advantages of the proposed strategies.展开更多
There has recently been a fundamental need to develop high efficiency microwave absorbers to reduce electro-magnet-ic pollution.It is often very difficult to obtain superior absorption with only one material,so we hav...There has recently been a fundamental need to develop high efficiency microwave absorbers to reduce electro-magnet-ic pollution.It is often very difficult to obtain superior absorption with only one material,so we have explored composites using fillers of activated carbon derived from biological material(oleaster seeds)and resin(apricot tree gum)with Fe_(3)O_(4) in a paraffin wax matrix to improve the dielectric properties and achieve a high specific surface area.A 1 mm thick layer of a Fe_(3)O_(4)+resin(FEOR),with the magnetic nanoparticles anchored to the gum,resulted in a reflection loss of−71.09 dB.We compared this with the results for composites using a filler of Fe_(3)O_(4)+activated carbon,and one with a three-component filler of Fe_(3)O_(4)+activated carbon+resin which had a very porous structure that had a direct effect on the surface polarization.However,the FEOR sample had near-ideal im-pedance matching,close to 1,which resulted in high absorption performance.In addition,the presence of defects improves mi-crowave attenuation by dipole polarization and charge carrier trapping.This work suggests the use of new types of biomaterials to in-crease microwave absorption.展开更多
Humic acids can promote the germination of many vegetable seeds,but the key active components remain unclear.This study utilized nutrient content,cross polarization magic angle spin ^(13)C solid magnetic resonance(CPM...Humic acids can promote the germination of many vegetable seeds,but the key active components remain unclear.This study utilized nutrient content,cross polarization magic angle spin ^(13)C solid magnetic resonance(CPMAS-^(13)C-NMR)and ultra-high performance liquid chromatography-mass spectrometry(UHPLC-MS)to characterize the chemical components of humic acids.Tomato seed germination index(GI)was determined with the goal of screening the key active components of humic acids.Humic acids had a significantly higher nutrient content,except for the total nitrogen(TN)and the total phosphorus(TP)contents.Humic acids had a higher content of O-CH_(3)/NCH,aromatic C-O and carbonyl C compared to weathered coal,with significantly lower anomeric C,aromatic C and O-alkyl C/alkyl C.There were 611 different compounds identified among the test materials using UHPLC-MS.Humic acids also had a significantly higher GI(158.0%and 153.1%)than weathered coal(85.5%).The organic matter(OM),TP and available potassium(AK)contents in humic acids were significantly positively correlated with GI,and available phosphorus(AP)was significantly negatively correlated.Among the carbon components,O-CH3/NCH,aromatic C-O and O-alkyl C/alkyl C were significantly positively correlated with GI,while anomeric C was significantly negatively correlated.Furthermore,among the top 10 positive and five negative correlation compounds,lipids and lipid-like molecules[armexifolin,boviquinone 4,3-methyladipic acid,lxocarpalactone A,monic acid,DG(20:1(11Z)/18:4(6Z,9Z,12Z,15Z)/0:0),and brassinolide]and organic acids and derivatives(N-acetylglutamic acid,8-hydroxy-5,6-octadienoic acid,acetyl-L-tyrosine,and hydroxyprolyl-methionine)in humic acids might be crucial active components for improving tomato seed germination.The results provided direct evidence for the identification of bioactive molecules of humic acids,and a scientific basis for the precise utilization of bioactive molecular components of humic acids in sustainable agricultural development.展开更多
基金supported by Research Grant from China Petroleum and Chemical Corp。
文摘Cu/ZnO-based catalysts are widely employed for methanol synthesis via CO_(2) hydrogenation.The preparation procedure is sensitive to the particle size and interfacial structure,which are considered as potential active centers influencing the rate of both methanol and CO formation.The particle size and the interaction between Cu and the support materials are influenced by the coprecipitation conditions,let alone that the mechanistic divergence remains unclear.In this work,a series of Cu/ZnO/ZrO_(2) catalysts were prepared via co-precipitation at different pH value and systematically characterized.The structure has been correlated with kinetic results to establish the structure-performance relationship.Kinetic analysis demonstrates that methanol synthesis follows a single-site Langmuir-Hinshelwood(L-H)mechanism,i.e.,Cu serves as the active site where CO_(2) and H_(2) competitively adsorb and react to form methanol.In contrast,CO formation proceeds via a dual-site L-H mechanism,where CO_(2) adsorbs onto ZnO and H_(2) onto Cu,with the reaction occurring at the Cu/ZnO interface.Therefore,for the direct formation of methanol,solely reducing the particle size of Cu would not be beneficial.
基金supported by National Natural Science Foundation of China(22178002,22178001)Natural Science Foundation of Anhui Province(2308085Y19)Excellent Youth Research Project of Anhui Provincial Department of Education(2022AH030045).
文摘Hydrogen-enriched ironmaking presents a promising approach to mitigate coke consumption and carbon emission in blast furnace(BF)operations.This work investigated the relationship between the structural features of cokes and their reactivity towards solution loss(SL),especially under hydrogen-enriched atmospheres.Six cokes were characterized,and their SL behaviors were examined under varying atmospheres to elucidate the effects of hydrogen enrichment.The results indicate that an increase in fixed carbon content leads to a decrease in the coke reactivity index(CRI)and an increase in coke strength after reaction(CSR),in the CO_(2) atmosphere,the CSR of coke increases from 35.76%−62.83%,while in the 90CO_(2)/10H_(2) atmosphere,the CSR of coke increases from 65.67%−84.09%.There is a good linear relationship between CRI and microcrystalline structure parameters of coke.Cokes with larger crystalline size,lower amorphous content,and smaller optical texture index(OTI)values show enhanced resistance to degradation and maintain structural integrity in BF.Kinetic analysis performed with the shifted-modified-random pore model(S-MRPM)reveals that alterations in pore structure and intrinsic mineral composition significantly influence the reaction rate.The introduction of a small amount of water vapor raises SL rates,whereas a minor addition of hydrogen(<10%)decelerates SL due to its incomplete conversion to water vapor and the reduced partial pressure of the gasifying agent.Thermodynamic calculations also indicate that the introduced hydrogen does not convert into the same fraction of water vapor.The shift from chemical reaction control to gas diffusion control as the rate-determining step with rising temperatures during SL process was confirmed,and the introduction of hydrogen does not notably alter SL behavior.This result demonstrated that introducing a small amount of hydrogen(<10%)can mitigate SL rates,thereby enhancing coke strength and reducing coke consumption and carbon emissions.
文摘Objective Magnetoencephalography(MEG),a non-invasive neuroimaging technique,meticulously captures the magnetic fields emanating from brain electrical activity.Compared with MEG based on superconducting quantum interference devices(SQUID),MEG based on optically pump magnetometer(OPM)has the advantages of higher sensitivity,better spatial resolution and lower cost.However,most of the current studies are clinical studies,and there is a lack of animal studies on MEG based on OPM technology.Pain,a multifaceted sensory and emotional phenomenon,induces intricate alterations in brain activity,exhibiting notable sex differences.Despite clinical revelations of pain-related neuronal activity through MEG,specific properties remain elusive,and comprehensive laboratory studies on pain-associated brain activity alterations are lacking.The aim of this study was to investigate the effects of inflammatory pain(induced by Complete Freund’s Adjuvant(CFA))on brain activity in a rat model using the MEG technique,to analysis changes in brain activity during pain perception,and to explore sex differences in pain-related MEG signaling.Methods This study utilized adult male and female Sprague-Dawley rats.Inflammatory pain was induced via intraplantar injection of CFA(100μl,50%in saline)in the left hind paw,with control groups receiving saline.Pain behavior was assessed using von Frey filaments at baseline and 1 h post-injection.For MEG recording,anesthetized rats had an OPM positioned on their head within a magnetic shield,undergoing two 15-minute sessions:a 5-minute baseline followed by a 10-minute mechanical stimulation phase.Data analysis included artifact removal and time-frequency analysis of spontaneous brain activity using accumulated spectrograms,generating spectrograms focused on the 4-30 Hz frequency range.Results MEG recordings in anesthetized rats during resting states and hind paw mechanical stimulation were compared,before and after saline/CFA injections.Mechanical stimulation elevated alpha activity in both male and female rats pre-and post-saline/CFA injections.Saline/CFA injections augmented average power in both sexes compared to pre-injection states.Remarkably,female rats exhibited higher average spectral power 1 h after CFA injection than after saline injection during resting states.Furthermore,despite comparable pain thresholds measured by classical pain behavioral tests post-CFA treatment,female rats displayed higher average power than males in the resting state after CFA injection.Conclusion These results imply an enhanced perception of inflammatory pain in female rats compared to their male counterparts.Our study exhibits sex differences in alpha activities following CFA injection,highlighting heightened brain alpha activity in female rats during acute inflammatory pain in the resting state.Our study provides a method for OPM-based MEG recordings to be used to study brain activity in anaesthetized animals.In addition,the findings of this study contribute to a deeper understanding of pain-related neural activity and pain sex differences.
文摘In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios.
文摘Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
基金Supported by Science & Engineering Research Council of Singnpore (0521010037)
文摘Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two time-division based distributed sensor scheduling schemes are proposed to deal with ISI by scheduling sensors periodically and adaptively respectively. Extended Kalman filter (EKF) is used as the tracking algorithm in distributed manner. Simulation results show that the adaptive sensor scheduling scheme can achieve superior tracking accuracy with faster tracking convergence speed.
文摘The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This paper develops a vibration isolation system of micro-manufacturing platform. The brains of many kinds of birds can isolate vibrations well, such as woodpecker’s brain. When a woodpecker pecks the wood at the speed as 1.6 times as the velocity of sound, its brain will tolerate the wallop 1 500 times of the weight of itself without any damage. The isolation mechanics and organic texture of woodpecker’s brain that has good isolation characteristics were studied. A structure model of vibration isolation system for the micro-manufacturing platform is established based on the bionics of the bird’s brain vibration isolation mechanism. In order to isolate effectively the high frequency vibrations from the ground, a rubber layer is used to isolate vibrations passively between the micro-manufacturing platform’s pedestal and the ground. This layer corresponds to the cartilage and muscles in the outer meninges of the bird’s brain. The active vibration isolation technique is adopted to isolate vibrations between the micro-manufacturing platform and the pedestal. Air springs are used as elastic components, which correspond to the interspaces between the outer meninges and the encephala of the bird’s brain. Actuators are made of giant magnetostrictive material, and it corresponds to the nerves and neural muscles linking the meninges and the encephala. The actuators and air springs are arranged vertically in parallel to make use of the giant magnetostrictive actuators effectively. The air springs support almost all weight of the micro-manufacturing platform and the giant magnetostrictive actuators support almost no weight. In order to realize high performance to isolate complex micro-vibration, the control method using a three-layer neural network is presented. This vibration control system takes into account the floor disturbance and the direct disturbance acting on the micro-manufacturing platform. The absolute acceleration of the micro-manufacturing platform is used as the performance index of vibration control. The performance of the control system is tested by numerical simulation. Simulation results show that the active vibration isolation system has good isolation performance against the floor disturbance and the direct disturbance acting on the micro-manufacturing platform in all the frequency range.
文摘This article makes the first attempt in assessing the influence of active constrained layer damping(ACLD)treatment towards precise control of frequency responses of functionally graded skew-magneto-electroelastic(FGSMEE)plates by employing finite element methods.The materials are functionally graded across the thickness of the plate in terms of modest power-law distributions.The principal equations of motion of FGSMEE are derived via Hamilton’s principle and solved using condensation technique.The effect of ACLD patches are modelled by following the complex modulus approach(CMA).Additionally,distinctive emphasis is laid to evaluate the influence of geometrical skewness on the attenuation capabilities of the plate.The accuracy of the current analysis is corroborated with comparison of previous researches of similar kind.Additionally,a complete parametric study is directed to understand the combined impacts of various factors like coupling fields,patch location,fiber orientation of piezoelectric patch in association with skew angle and power-law index.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2021M2E8A1038938,No.NRF-2021R1F1A1048374,and No.NRF-2016R1A3B1908336)supported by a grant of the Korea Institute of Radiological and Medical Sciences(KIRAMS),funded by the Ministry of Science and ICT(MSIT),Republic of Korea(No.50051—2021,No.50623—2021)。
文摘The cell-type continuous electromagnetic radiation system is a demonstration device capable of generating high-power millimeter electromagnetic waves of a specific wavelength and observing their effects on living organisms.It irradiates a biological sample placed in a 30×30×50 cm^(3)cell with electromagnetic waves in the 3.15-mm-wavelength region(with an output of≥1 W)and analyzes the temperature change of the sample.A vacuum electronic device-based coupled-cavity backward-wave oscillator converts the electron energy of the electron beam into radiofrequency(RF)energy and radiates it to the target through an antenna,increasing the temperature through the absorption of RF energy in the skin.The system causes pain and ultimately reduces combat power.A cell-type continuous electromagnetic radiation system consisting of four parts—an electromagnetic-wave generator,a highvoltage power supply,a test cell,and a system controller—generates an RF signal of≥1 W in a continuous waveform at a 95-GHz center frequency,as well as a chemical solution with a dielectric constant similar to that of the skin of a living organism.An increase of 5°C lasting approximately 10 s was confirmed through an experiment.
基金the National Natural Science Foundation of China(Grant No.62101579).
文摘Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.
文摘Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.
文摘This paper investigates the effect of porosity on active damping of geometrically nonlinear vibrations(GNLV)of the magneto-electro-elastic(MEE)functionally graded(FG)plates incorporated with active treatment constricted layer damping(ATCLD)patches.The perpendicularly/slanted reinforced 1-3 piezoelectric composite(1-3 PZC)constricting layer.The constricted viscoelastic layer of the ATCLD is modeled in the time-domain using Golla-Hughes-Mc Tavish(GHM)technique.Different types of porosity distribution in the porous magneto-electro-elastic functionally graded PMEE-FG plate graded in the thickness direction.Considering the coupling effects among elasticity,electrical,and magnetic fields,a three-dimensional finite element(FE)model for the smart PMEE-FG plate is obtained by incorporating the theory of layer-wise shear deformation.The geometric nonlinearity adopts the von K arm an principle.The study presents the effects of a variant of a power-law index,porosity index,the material gradation,three types of porosity distribution,boundary conditions,and the piezoelectric fiber’s orientation angle on the control of GNLV of the PMEE-FG plates.The results reveal that the FG substrate layers’porosity significantly impacts the nonlinear behavior and damping performance of the PMEE-FG plates.
基金Project(5227010679)supported by the National Natural Science Foundation of China。
文摘The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.
基金supported by the National Natural Science Foundation of China(12033006,12192221,123B2042).
文摘A recently released XMM-Newton note revealed a significant calibration issue between nuclear spectroscopic telescope array(NuSTAR)and XMM-Newton European Photon Imaging Camera(EPIC)and provided an empirical correction to the EPIC effective area.To quantify the bias caused by the calibration issue in the joint analysis of XMM-NuSTAR spectra and verify the effectiveness of the correction,in this work,we perform joint-fitting of the NuSTAR and EPIC-pn spectra for a large sample of 104 observation pairs of 44 X-ray bright active galactic nuclei(AGN).The spectra were extracted after requiring perfect simultaneity between the XMM-Newton and NuSTAR exposures(merging good time intervals(GTIs)from two missions)to avoid bias due to the rapid spectral variability of the AGN.Before the correction,the EPIC-pn spectra are systematically harder than the corresponding NuSTAR spectra by■subsequently yielding significantly underestimated cutoff energy E_(cut)and the strength of reflection component R when performing joint-fitting.We confirm that the correction is highly effective and can commendably erase the discrepancy in best-fitΓ,E_(cut),and R.We thus urge the community to apply the correction when joint-fitting XMM-NuSTAR spectra,but note that the correction is limited to 3–12 keV and therefore not applicable when the soft X-ray band data are included.Besides,we show that as merging GTIs from two missions would cause severe loss of NuSTAR net exposure time,in many cases,joint-fitting yields no advantage compared with utilizing NuSTAR data alone.Finally,We present a technical note on filtering periods of high background flares for XMM-Newton EPIC-pn exposures in the small window(SW)mode.
基金supported by the China Postdoctoral Science Foundation (Grant No.2021M700321)the Fundamental Research Funds for the Central Universities (Grant No.YWF-23-Q1041)。
文摘In the realm of aerial warfare,the protection of Unmanned Aerial Vehicles(UAVs) against adversarial threats is crucial.In order to balance the impact of response delays and the demand for onboard applications,this paper derives three analytical game strategies for the active defense of UAVs from differential game theory,accommodating the first-order dynamic delays.The targeted UAV executes evasive maneuvers and launches a defending missile to intercept the attacking missile,which constitutes a UAVMissile-Defender(UMD) three-body game problem.We explore two distinct operational paradigms:the first involves the UAV and the defender working collaboratively to intercept the incoming threat,while the second prioritizes UAV self-preservation,with independent maneuvering away from potentially sacrificial engagements.Starting with model linearization and order reduction,the Collaborative Interception Strategy(CIS) is first derived via a linear quadratic differential game formulation.Building upon CIS,we further explore two distinct strategies:the Informed Defender Interception Strategy(IDIS),which utilizes UAV maneuvering information,and the Unassisted Defender Interception Strategy(UDIS),which does not rely on UAV maneuvering information.Additionally,we investigate the conditions for the existence of saddle point solutions and their relationship with vehicle maneuverability and response agility.The simulations demonstrate the effectiveness and advantages of the proposed strategies.
基金funding from Stiftelsen Olle Engkvist Byggmastare(214-0346 and 217-0014)the Swedish Research Council(202103675)。
文摘There has recently been a fundamental need to develop high efficiency microwave absorbers to reduce electro-magnet-ic pollution.It is often very difficult to obtain superior absorption with only one material,so we have explored composites using fillers of activated carbon derived from biological material(oleaster seeds)and resin(apricot tree gum)with Fe_(3)O_(4) in a paraffin wax matrix to improve the dielectric properties and achieve a high specific surface area.A 1 mm thick layer of a Fe_(3)O_(4)+resin(FEOR),with the magnetic nanoparticles anchored to the gum,resulted in a reflection loss of−71.09 dB.We compared this with the results for composites using a filler of Fe_(3)O_(4)+activated carbon,and one with a three-component filler of Fe_(3)O_(4)+activated carbon+resin which had a very porous structure that had a direct effect on the surface polarization.However,the FEOR sample had near-ideal im-pedance matching,close to 1,which resulted in high absorption performance.In addition,the presence of defects improves mi-crowave attenuation by dipole polarization and charge carrier trapping.This work suggests the use of new types of biomaterials to in-crease microwave absorption.
基金Supported by the National Natural Science Foundation of China(42207371)the Technological Project of Jiangsu Vocational College of Agriculture and Forestry(2021kj17)+1 种基金Yafu Technology Innovation and Service Major Project of Jiangsu Vocational College of Agriculture and Forestry(2024kj01)Key Research Projects of Jiangsu Vocational College of Agriculture and Forestry(2023kj14)。
文摘Humic acids can promote the germination of many vegetable seeds,but the key active components remain unclear.This study utilized nutrient content,cross polarization magic angle spin ^(13)C solid magnetic resonance(CPMAS-^(13)C-NMR)and ultra-high performance liquid chromatography-mass spectrometry(UHPLC-MS)to characterize the chemical components of humic acids.Tomato seed germination index(GI)was determined with the goal of screening the key active components of humic acids.Humic acids had a significantly higher nutrient content,except for the total nitrogen(TN)and the total phosphorus(TP)contents.Humic acids had a higher content of O-CH_(3)/NCH,aromatic C-O and carbonyl C compared to weathered coal,with significantly lower anomeric C,aromatic C and O-alkyl C/alkyl C.There were 611 different compounds identified among the test materials using UHPLC-MS.Humic acids also had a significantly higher GI(158.0%and 153.1%)than weathered coal(85.5%).The organic matter(OM),TP and available potassium(AK)contents in humic acids were significantly positively correlated with GI,and available phosphorus(AP)was significantly negatively correlated.Among the carbon components,O-CH3/NCH,aromatic C-O and O-alkyl C/alkyl C were significantly positively correlated with GI,while anomeric C was significantly negatively correlated.Furthermore,among the top 10 positive and five negative correlation compounds,lipids and lipid-like molecules[armexifolin,boviquinone 4,3-methyladipic acid,lxocarpalactone A,monic acid,DG(20:1(11Z)/18:4(6Z,9Z,12Z,15Z)/0:0),and brassinolide]and organic acids and derivatives(N-acetylglutamic acid,8-hydroxy-5,6-octadienoic acid,acetyl-L-tyrosine,and hydroxyprolyl-methionine)in humic acids might be crucial active components for improving tomato seed germination.The results provided direct evidence for the identification of bioactive molecules of humic acids,and a scientific basis for the precise utilization of bioactive molecular components of humic acids in sustainable agricultural development.