X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hi...X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hindering widespread technology adoption.Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals.Previous studies mainly used linear regression(LR)algorithms including simple linear regression(SLR),multivariable linear regression(MLR),and multivariable linear regression with interaction(MLRI)but often fell short attaining satisfactory results.This study employed the particle swarm optimization support vector machine(PSO-SVM)algorithm for sorting porphyritic copper ore pebble.Lab-scale results showed PSO-SVM out-performed LR and raw data(RD)models and the significant interaction effects among input features was observed.Despite poor input data quality,PSO-SVM demonstrated exceptional capabilities.Lab-scale sorting achieved 93.0%accuracy,0.24%grade increase,84.94%recovery rate,57.02%discard rate,and a remarkable 39.62 yuan/t net smelter return(NSR)increase compared to no sorting.These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality(T=10,T is XRF testing times).The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated.Input element selection and mineral association analysis elucidate element importance and influence mechanisms.展开更多
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的...雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的问题,提出了一种基于优化K-means的雷达信号分选算法。通过将水波中心扩散(water wave center diffusion,WWCD)优化算法和Canopy算法相结合,实现了Canopy算法距离阈值的优选,并为后续K-means聚类优化了K值的选择,有效降低了K-means算法对初始聚类数选择的敏感性。实验中,主要通过3个UCI公开数据集和3类频率跳变雷达脉冲数据进行聚类分选效果验证,并与常见的DBSCAN、OPTICS、Canopy-K-means等聚类算法进行了聚类效果对比。结果表明,所提方法有较高的聚类分选准确率,且对初始参数的设置不敏感。展开更多
This paper provides a method of producing a minimum cost spanning tree (MCST) using set operations. It studies the data structure for implementation of set operations and the algorithm to be applied to this structure ...This paper provides a method of producing a minimum cost spanning tree (MCST) using set operations. It studies the data structure for implementation of set operations and the algorithm to be applied to this structure and proves the correctness and the complexity of the algorithm. This algorithm uses the FDG (formula to divide elements into groups) to sort (the FDG sorts a sequence of n elements in expected tir O(n)) and uses the method of path compression to find and to unite. Therefore. n produces an MCST of an undirected network having n vertices and e edges in expected time O(eG(n)).展开更多
This paper presents a new tree sorting algorithm whose average time complexity is much better than the sorting methods using AVL-Tree or other balanced trees. The experiment shows that our algorithm is much faster tha...This paper presents a new tree sorting algorithm whose average time complexity is much better than the sorting methods using AVL-Tree or other balanced trees. The experiment shows that our algorithm is much faster than the sorting methods using AVL-Thee or other balanced trees.展开更多
The second Egyptian research reactor ET-RR-2 went critical on the 27th of November 1997.The National Center of Nuclear Safety and Radiation Control (NCNSRC) has the responsibility of the evaluation and assessment of t...The second Egyptian research reactor ET-RR-2 went critical on the 27th of November 1997.The National Center of Nuclear Safety and Radiation Control (NCNSRC) has the responsibility of the evaluation and assessment of the safety of this reactor.The purpose of this paper is to present an approach to optimization of the fuel element plate. For an efficient search through the solution space we use a multi objective genetic algorithm which allows us to identify a set of Pareto optimal solutions providing the decision maker with the complete spectrum of optimal solutions with respect to the various targets.The aim of this paper is to propose a new approach for optimizing the fuel element plate in the reactor.The fuel element plate is designed with a view to improve reliability and lifetime and it is one of the most important elements during the shut down.In this present paper,we present a conceptual design approach for fuel element plate,in conjunction with a genetic algorithm to obtain a fuel plate that maximizes a fitness value to optimize the safety design of the fuel plate.展开更多
基金supported by State Key Laboratory of Mineral Processing (No.BGRIMM-KJSKL-2022-16)China Postdoctoral Science Foundation (No.2021M700387)+1 种基金National Natural Science Foundation of China (No.G2021105015L)Ministry of Science and Technology of the People’s Republic of China (No.2022YFC2904502)。
文摘X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hindering widespread technology adoption.Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals.Previous studies mainly used linear regression(LR)algorithms including simple linear regression(SLR),multivariable linear regression(MLR),and multivariable linear regression with interaction(MLRI)but often fell short attaining satisfactory results.This study employed the particle swarm optimization support vector machine(PSO-SVM)algorithm for sorting porphyritic copper ore pebble.Lab-scale results showed PSO-SVM out-performed LR and raw data(RD)models and the significant interaction effects among input features was observed.Despite poor input data quality,PSO-SVM demonstrated exceptional capabilities.Lab-scale sorting achieved 93.0%accuracy,0.24%grade increase,84.94%recovery rate,57.02%discard rate,and a remarkable 39.62 yuan/t net smelter return(NSR)increase compared to no sorting.These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality(T=10,T is XRF testing times).The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated.Input element selection and mineral association analysis elucidate element importance and influence mechanisms.
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
文摘雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的问题,提出了一种基于优化K-means的雷达信号分选算法。通过将水波中心扩散(water wave center diffusion,WWCD)优化算法和Canopy算法相结合,实现了Canopy算法距离阈值的优选,并为后续K-means聚类优化了K值的选择,有效降低了K-means算法对初始聚类数选择的敏感性。实验中,主要通过3个UCI公开数据集和3类频率跳变雷达脉冲数据进行聚类分选效果验证,并与常见的DBSCAN、OPTICS、Canopy-K-means等聚类算法进行了聚类效果对比。结果表明,所提方法有较高的聚类分选准确率,且对初始参数的设置不敏感。
文摘This paper provides a method of producing a minimum cost spanning tree (MCST) using set operations. It studies the data structure for implementation of set operations and the algorithm to be applied to this structure and proves the correctness and the complexity of the algorithm. This algorithm uses the FDG (formula to divide elements into groups) to sort (the FDG sorts a sequence of n elements in expected tir O(n)) and uses the method of path compression to find and to unite. Therefore. n produces an MCST of an undirected network having n vertices and e edges in expected time O(eG(n)).
文摘This paper presents a new tree sorting algorithm whose average time complexity is much better than the sorting methods using AVL-Tree or other balanced trees. The experiment shows that our algorithm is much faster than the sorting methods using AVL-Thee or other balanced trees.
文摘The second Egyptian research reactor ET-RR-2 went critical on the 27th of November 1997.The National Center of Nuclear Safety and Radiation Control (NCNSRC) has the responsibility of the evaluation and assessment of the safety of this reactor.The purpose of this paper is to present an approach to optimization of the fuel element plate. For an efficient search through the solution space we use a multi objective genetic algorithm which allows us to identify a set of Pareto optimal solutions providing the decision maker with the complete spectrum of optimal solutions with respect to the various targets.The aim of this paper is to propose a new approach for optimizing the fuel element plate in the reactor.The fuel element plate is designed with a view to improve reliability and lifetime and it is one of the most important elements during the shut down.In this present paper,we present a conceptual design approach for fuel element plate,in conjunction with a genetic algorithm to obtain a fuel plate that maximizes a fitness value to optimize the safety design of the fuel plate.