期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
基于改进TSO优化Xception的PEMFC故障诊断
1
作者 张领先 刘斌 +1 位作者 邓琳 任宇航 《化工学报》 EI CSCD 北大核心 2024年第3期945-955,共11页
针对质子交换膜燃料电池(PEMFC)的故障诊断问题,提出了一种利用改进的瞬态搜索优化(TSO)算法优化Xception网络的故障通用诊断方法。首先,对故障数据进行线性判别分析降维和归一化处理,在保留主要特征的前提下降低计算复杂度;其次,引入T... 针对质子交换膜燃料电池(PEMFC)的故障诊断问题,提出了一种利用改进的瞬态搜索优化(TSO)算法优化Xception网络的故障通用诊断方法。首先,对故障数据进行线性判别分析降维和归一化处理,在保留主要特征的前提下降低计算复杂度;其次,引入Tent混沌映射和反向学习策略增强TSO算法的全局搜索能力,在训练阶段对Xception神经网络的超参数进行优化;最后,使用充分训练的Xception网络对PEMFC故障进行分类识别,并与经典的分类模型进行对比。在基于实验测量的水管理故障数据和仿真产生的多类故障数据上,Xception均取得了最高的分类准确率,分别为100%和98.08%,这表明Xception对数据特征的提取能力较强,且所提方法能作为一种PEMFC故障的通用诊断方法。 展开更多
关键词 质子交换膜燃料电池 故障诊断 Tent混沌映射 反向学习 瞬态搜索优化 xception神经网络
在线阅读 下载PDF
基于Xception的细粒度图像分类 被引量:17
2
作者 张潜 桑军 +3 位作者 吴伟群 吴中元 向宏 蔡斌 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第5期85-91,共7页
细粒度图像分类是对传统图像分类的子类进行更加细致的划分,实现对物体更为精细的识别,它是计算机视觉领域的一个极具挑战的研究方向。通过对现有的细粒度图像分类算法和Xception模型的分析,提出将Xception模型应用于细粒度图像分类任... 细粒度图像分类是对传统图像分类的子类进行更加细致的划分,实现对物体更为精细的识别,它是计算机视觉领域的一个极具挑战的研究方向。通过对现有的细粒度图像分类算法和Xception模型的分析,提出将Xception模型应用于细粒度图像分类任务。用ImageNet分类的预训练模型参数作为卷积层的初始化,然后对图像进行缩放、数据类型转换、数值归一化处理,以及对分类器参数随机初始化,最后对网络进行微调。在公开的细粒度图像库CUB200-2011、Flower102和Stanford Dogs上进行实验验证,得到的平均分类正确率为71.0%、89.9%和91.4%。实验结果表明Xception模型在细粒度图像分类上有很好的泛化能力。由于不需要物体标注框和部位标注点等额外人工标注信息,Xception模型用在细粒度图像分类上具有较好的通用性和鲁棒性。 展开更多
关键词 细粒度图像分类 xception 卷积神经网络 深度学习
在线阅读 下载PDF
基于Xception网络的弱监督细粒度图像分类 被引量:6
3
作者 丁文谦 余鹏飞 +1 位作者 李海燕 陆鑫伟 《计算机工程与应用》 CSCD 北大核心 2022年第2期235-243,共9页
随着深度学习的快速发展,计算机视觉领域对图像的分类研究不仅仅局限于识别出物体的类别,更需要在传统图像分类任务的基础上进行更细致的类别划分。通过对现有细粒度图像分类算法和模型的分析研究,提出一种基于Xception模型与WSDAN(weak... 随着深度学习的快速发展,计算机视觉领域对图像的分类研究不仅仅局限于识别出物体的类别,更需要在传统图像分类任务的基础上进行更细致的类别划分。通过对现有细粒度图像分类算法和模型的分析研究,提出一种基于Xception模型与WSDAN(weakly supervised data augmentation network)弱监督数据增强的方法相结合的深度学习网络应用于细粒度图像分类任务。该方法以Xception网络作为骨干网络和特征提取网络、利用改进的WSDAN模型进行数据增强,并把增强后的图像反馈回网络作为输入图像来增强网络的泛化能力。在常用的细粒度图像数据集和NABirds数据集上进行实验验证,得到的分类正确率分别为89.28%、91.18%、94.47%、93.04%和88.4%。实验结果表明,与WSDAN(Pytorch)模型及其他多个主流细粒度分类算法相比,该方法取得了更好的分类结果。 展开更多
关键词 细粒度图像分类 数据增强 深度学习 弱监督 xception网络
在线阅读 下载PDF
基于改进Xception方法的绝缘子识别 被引量:5
4
作者 汤璐 王淑青 +2 位作者 金浩博 刘逸凡 王娟 《智慧电力》 北大核心 2022年第2期69-74,共6页
为了对无人机航拍巡检中的绝缘子是否含有缺陷进行准确识别,改进了Xception分类识别方法。首先,利用resize函数将无人机拍摄下的图片进行缩放处理至合适尺寸,并采取数据增强技术扩充样本;其次,将Xception的池化层和输出层进行改进至更... 为了对无人机航拍巡检中的绝缘子是否含有缺陷进行准确识别,改进了Xception分类识别方法。首先,利用resize函数将无人机拍摄下的图片进行缩放处理至合适尺寸,并采取数据增强技术扩充样本;其次,将Xception的池化层和输出层进行改进至更适合绝缘子复杂情况下的分类识别,并在验证集上对模型的参数进行对比确定,使模型性能最佳;最后,改进的Xception方法在数据集上与4种图像分类算法进行比较。实验结果表明,在数据集上改进的Xception方法的准确度和每秒处理图片张数都有一定提升。 展开更多
关键词 绝缘子识别 神经网络 改进xception 无人机巡检
在线阅读 下载PDF
基于多层感知机改进型Xception人脸表情识别 被引量:4
5
作者 韩保金 任福继 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第6期65-72,共8页
针对使用深度学习提取人脸表情图像特征时易出现冗余特征,提出了一种基于多层感知机(MLP)的改进型Xception人脸表情识别网络.该模型将Xception网络提取的特征输入至多层感知机中进行加权处理,提取出主要特征,滤除冗余特征,从而使得识别... 针对使用深度学习提取人脸表情图像特征时易出现冗余特征,提出了一种基于多层感知机(MLP)的改进型Xception人脸表情识别网络.该模型将Xception网络提取的特征输入至多层感知机中进行加权处理,提取出主要特征,滤除冗余特征,从而使得识别准确率得到提升.首先将图像缩放为48*48,然后对数据集进行增强处理,再将这些经过处理的图片送入本文所提网络模型中.消融实验对比表明:本文模型在CK+数据集、JAFFE数据集和MMI数据集上的正确识别率分别为98.991%、99.02%和80.339%,Xception模型在CK+数据集、JAFFE数据集和MMI数据集上的正确识别率分别为97.4829%、90.476%和74.0678%,Xception+2lay模型在CK+数据集、JAFFE数据集和MMI数据集上的正确识别率分别为98.04%、84.06%和75.593%.通过以上消融实验对比,本文方法的识别正确率明显优于Xception模型与Xception+2lay模型.与其他模型相比较也验证了本文模型的有效性. 展开更多
关键词 人脸表情识别 卷积神经网络(CNN) 多层感知机 xception 深度可分离卷积
在线阅读 下载PDF
多尺度SE-Xception服装图像分类 被引量:20
6
作者 陈巧红 陈翊 +1 位作者 李文书 贾宇波 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第9期1727-1735,共9页
应用当前较新颖且分类性能靠前的卷积神经网络Xception作为基础网络结构,尝试采用多尺度的深度可分离卷积来提升模型特征信息的丰富度,在模型中嵌入SE-Net模块增强有用特征通道,减弱无用特征通道.实验结果表明:提出的多尺度SE-Xception... 应用当前较新颖且分类性能靠前的卷积神经网络Xception作为基础网络结构,尝试采用多尺度的深度可分离卷积来提升模型特征信息的丰富度,在模型中嵌入SE-Net模块增强有用特征通道,减弱无用特征通道.实验结果表明:提出的多尺度SE-Xception模型在2种噪声程度不同的服装数据集中均取得不错表现;ACS数据集的平均分类准确率为78.34%,分别高于VGG-16、ResNet-50和Xception模型8.52%、4.81%、3.69%;验证了多尺度SEXception模型具有更好的特征提取能力,能够提取到更多的服装信息,从而提高服装图像分类效果,一定程度上解决了特征尺度单一、信息丰富度低的问题. 展开更多
关键词 服装图像分类 多尺度SE-xception 图像识别 深度学习 机器学习 卷积神经网络(CNN)
在线阅读 下载PDF
基于注意力机制结合改进动态ReLU的输变电工程图纸智能评审方法 被引量:2
7
作者 陈晨 薛文杰 +2 位作者 董平先 翟育新 齐桓若 《沈阳工业大学学报》 CAS 北大核心 2024年第6期772-778,共7页
针对传统识别方法对输变电工程图纸的分类效果较差且精确度偏低的问题,在注意力机制和改进动态ReLU基础上,提出了一种基于深度学习的工程图纸智能评审方法。利用Xception基础网络与动态ReLU函数优化小样本数据的分类效果,进而完善样本... 针对传统识别方法对输变电工程图纸的分类效果较差且精确度偏低的问题,在注意力机制和改进动态ReLU基础上,提出了一种基于深度学习的工程图纸智能评审方法。利用Xception基础网络与动态ReLU函数优化小样本数据的分类效果,进而完善样本数据的ReLU参数分配。通过引入改进注意力机制模块,深化神经网络算法中特征图的权重分配,进一步提升了工程图纸的分类效果。仿真结果表明,与传统工程图纸识别方法相比,基于深度学习的工程图纸智能评审方法具有更优分类效果。 展开更多
关键词 输变电工程图纸 改进SE模块 ReLU函数 深度学习 xception网络 图像识别 图像分类 卷积神经网络
在线阅读 下载PDF
注意力融合双流特征的局部GAN生成人脸检测算法 被引量:9
8
作者 陈北京 王鹏 +1 位作者 喻乐延 舒华忠 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第3期543-551,共9页
为解决现有局部生成式对抗网络(GAN)生成人脸检测算法在检测经过后处理的图像时性能严重下降的问题,提出一种注意力融合双流特征的局部GAN生成人脸检测算法.该算法利用双流网络分别从RGB颜色空间和YCbCr颜色空间中提取鲁棒特征,并引入... 为解决现有局部生成式对抗网络(GAN)生成人脸检测算法在检测经过后处理的图像时性能严重下降的问题,提出一种注意力融合双流特征的局部GAN生成人脸检测算法.该算法利用双流网络分别从RGB颜色空间和YCbCr颜色空间中提取鲁棒特征,并引入注意力特征融合模块在不同网络层上融合双流特征以获得更鲁棒的特征.同时采用多层次特征融合决策提高网络对局部生成区域特征的提取和辨别能力.实验结果表明,所提算法的鲁棒性优于现有算法,尤其是针对JPEG压缩和双边滤波后处理.在FFHQ+规则子集上与次优算法相比,该算法在3种强度的JPEG压缩和双边滤波上的平均准确率分别提高了1.88%和2.64%;在FFHQ+不规则子集上与次优算法相比,该算法在3种强度的JPEG压缩和双边滤波上的平均准确率分别提高了2.85%和1.60%. 展开更多
关键词 生成式对抗网络(GAN) 生成人脸 xception网络 特征融合 注意力机制
在线阅读 下载PDF
基于属性描述的零样本滚动轴承故障诊断 被引量:5
9
作者 赵晓平 吕凯扬 +1 位作者 邵凡 张中洋 《振动与冲击》 EI CSCD 北大核心 2022年第15期105-115,共11页
数据驱动方式是对故障诊断模型进行训练的主要方法,然而因为机器运转环境复杂,没有可用的目标故障样本供模型训练而导致特征学习不充分的情况时有发生。针对这一问题,结合零样本学习(zero-shot learning,ZSL)思想,从属性描述的角度出发... 数据驱动方式是对故障诊断模型进行训练的主要方法,然而因为机器运转环境复杂,没有可用的目标故障样本供模型训练而导致特征学习不充分的情况时有发生。针对这一问题,结合零样本学习(zero-shot learning,ZSL)思想,从属性描述的角度出发,提出了一种基于Xception网络和卷积神经网络(convolutional neural networks,CNN)的零样本滚动轴承故障诊断方法,即X-CNN故障诊断模型。X-CNN模型首先使用Xception网络对故障信号时频图进行特征提取;根据故障类别的属性描述构建属性矩阵,使用CNN对提取的特征进行属性学习;最后通过属性矩阵的相似度比较完成诊断工作。通过零样本条件下的故障诊断试验,证明了X-CNN故障诊断模型可以在不使用测试类样本进行训练的情况下完成滚动轴承故障诊断工作。 展开更多
关键词 零样本学习(ZSL) xception 卷积神经网络(CNN) 故障诊断 属性描述
在线阅读 下载PDF
基于轻量卷积网络的马铃薯外部缺陷无损分级 被引量:22
10
作者 杨森 冯全 +3 位作者 张建华 王关平 张鹏 闫红强 《食品科学》 EI CAS CSCD 北大核心 2021年第10期284-289,共6页
目前马铃薯外部缺陷检测方法主要依靠人工提取特征,且检测精度不高,为了更好地对马铃薯外部缺陷进行快速、准确在线分级,本实验提出一种基于轻量卷积网络的在线分级方法。首先,利用ImageNet数据集训练Xception网络模型,建立马铃薯预训... 目前马铃薯外部缺陷检测方法主要依靠人工提取特征,且检测精度不高,为了更好地对马铃薯外部缺陷进行快速、准确在线分级,本实验提出一种基于轻量卷积网络的在线分级方法。首先,利用ImageNet数据集训练Xception网络模型,建立马铃薯预训练网络模型;然后,重新构建5类缺陷全连接层,并通过迁移学习在预训练网络模型上训练马铃薯缺陷数据集;最后,基于外部缺陷识别模型分别测试5类缺陷的分级性能。结果表明,学习率为0.000 01时,网络模型整体性能最优,训练准确率为98.88%,损失值为0.034 9;在相同样本条件下,与9种不同深度的网络进行对比,本实验构建的轻量级网络模型识别效果最好,平均识别准确率达到96.04%,且运行时间比识别效果较好的ResNet152网络更短,本实验网络模型的识别速率为6.4幅/s,本研究结果可为马铃薯在线分级提供理论支持。 展开更多
关键词 马铃薯 外部缺陷 迁移学习 xception网络 分级
在线阅读 下载PDF
基于深度学习的太阳黑子Wilson山磁类型识别方法 被引量:2
11
作者 李书馨 赵学斌 +5 位作者 陈君 李伟夫 陈洪 陈艳红 崔延美 袁天娇 《空间科学学报》 CAS CSCD 北大核心 2022年第3期333-339,共7页
太阳黑子是太阳光球层中带有较强磁场的区域,通常是太阳爆发活动的源区。Wilson山磁分类是当前最为主流的太阳黑子分类方法之一,对研究太阳爆发有重要意义。利用2010-2017年间SDO/HMI成像仪观测到的720s_SHARP磁图和白光图数据,研究使... 太阳黑子是太阳光球层中带有较强磁场的区域,通常是太阳爆发活动的源区。Wilson山磁分类是当前最为主流的太阳黑子分类方法之一,对研究太阳爆发有重要意义。利用2010-2017年间SDO/HMI成像仪观测到的720s_SHARP磁图和白光图数据,研究使用深度学习对太阳黑子群Wilson山磁分类的方法。实验结果表明,Xception网络在识别太阳黑子Wilson山磁类型上能取得最优的效果,其中对α类型黑子的F1得分为96.50%,β类为93.20%,其他类型的黑子为84.65%。 展开更多
关键词 太阳黑子 xception网络 深度学习 Wilson山磁分类
在线阅读 下载PDF
基于篡改伪影的深度伪造检测方法 被引量:4
12
作者 耿鹏志 樊红兴 +1 位作者 张翌阳 唐云祁 《计算机工程》 CAS CSCD 北大核心 2021年第12期156-162,共7页
随着深度伪造(Deepfake)技术的不断发展,犯罪分子可以利用造假图片伪造不在场证明,从而误导侦查方向以逃避法律责任。现有多数检测方法依赖于数据驱动,在跨压缩率、跨分辨率方面鲁棒性不强。研究Deepfake视频在脸部区域所遗留的伪影,建... 随着深度伪造(Deepfake)技术的不断发展,犯罪分子可以利用造假图片伪造不在场证明,从而误导侦查方向以逃避法律责任。现有多数检测方法依赖于数据驱动,在跨压缩率、跨分辨率方面鲁棒性不强。研究Deepfake视频在脸部区域所遗留的伪影,建立一种基于Xception的双流网络检测模型,以实现对Deepfake图片的自动检测。利用Xception网络提取图片的全局空域特征,对脸部区域进行有效遮挡,凸显出脸部伪影并提取伪影特征。在此基础上,将空域特征与伪造特征2个支流的预测结果进行融合判别。在Deepfakes数据集上的实验结果表明,该模型的测试精度高达0.9864。 展开更多
关键词 深度伪造 卷积神经网络 篡改伪影 双流网络 xception网络
在线阅读 下载PDF
数据增强对深度伪造检测模型的影响研究 被引量:3
13
作者 耿鹏志 唐云祁 +2 位作者 樊红兴 张时润 朱新同 《计算机工程与应用》 CSCD 北大核心 2021年第17期10-16,共7页
针对高压缩率图片检测的准确度不高的问题,解决此类问题的一种有效方法是使用数据增强策略,进而提高对高压缩率图片检测的准确度。围绕数据增强对深度伪造检测模型的影响展开研究,检测网络使用XceptionNet,选取14种基于遮挡类和光学变... 针对高压缩率图片检测的准确度不高的问题,解决此类问题的一种有效方法是使用数据增强策略,进而提高对高压缩率图片检测的准确度。围绕数据增强对深度伪造检测模型的影响展开研究,检测网络使用XceptionNet,选取14种基于遮挡类和光学变化的数据增强方法进行分析,之后使用Grad-CAM进行了可视化分析,增强模型的可解释性。实验结果表明,这4种遮挡式方法均有一定效果的提升,而基于光学变换的数据增强方法中,对比度和亮度变换可以提升模型的检测性能。相比于增加网络模型结构等操作,数据增强方法简单有效,可以有效地提升模型在经后处理操作图像上的检测准确度,但数据增强操作并不能有效地增强检测模型的泛化性,因此,针对泛化性的研究仍任重而道远。 展开更多
关键词 深度伪造 伪造检测 卷积神经网络 xception网络 数据增强
在线阅读 下载PDF
隐匿危险品高准确度太赫兹光谱识别方法 被引量:3
14
作者 曾子威 李宏光 +1 位作者 郭宇烽 廖文焘 《量子电子学报》 CAS CSCD 北大核心 2023年第3期340-348,共9页
爆炸物等危险品的分子振动和转动能级在太赫兹频谱段具有独特的指纹谱特性,且太赫兹波对非极性物质及介电材料有较强的透过性及低能性,因此利用太赫兹光谱可以实现障碍物隐匿复杂环境下的危险品无损探测。目前各种相关材料的太赫兹吸收... 爆炸物等危险品的分子振动和转动能级在太赫兹频谱段具有独特的指纹谱特性,且太赫兹波对非极性物质及介电材料有较强的透过性及低能性,因此利用太赫兹光谱可以实现障碍物隐匿复杂环境下的危险品无损探测。目前各种相关材料的太赫兹吸收光谱标准库并不完善,且市面上各类太赫兹光谱仪硬件参数不同、检测标准不统一,导致单纯依赖特征吸收峰的识别方法并不可靠。针对上述问题,提出一种不依赖于吸收峰准确性的物质识别技术路线:提取物质在不同频率分辨率、不同障碍物隐匿情况下的太赫兹吸收谱,利用Marr小波变换在频域上展开得到具有特征唯一性的小波频域尺度图,建立样本集;其次,结合迁移学习方法,利用Xception网络对样本集进行训练识别。实验结果表明,此方法可以很好地对不同障碍物隐匿环境中的危险品进行分类识别,识别准确率可达94%。说明此方法的识别准确性不受系统频率分辨率即吸收谱精确度等系统因素影响,为邮件及快递包裹等障碍物隐匿危险品无损检测、定性识别提供了一种新的技术思路。 展开更多
关键词 光谱学 太赫兹光谱 频率分辨率 Marr小波变换 xception迁移学习
在线阅读 下载PDF
基于多通道注意力机制的人脸替换鉴别 被引量:2
15
作者 武茜 贾世杰 《计算机工程》 CAS CSCD 北大核心 2022年第2期180-185,193,共7页
基于深度学习的人脸替换技术取得快速发展,但由DeepFake自动生成的人脸替换图片有可能危害人们的隐私安全。针对DeepFake图片鉴别问题,建立一种基于多通道注意力机制的深度学习鉴别网络模型。将Xception网络作为基础特征提取器,在多通... 基于深度学习的人脸替换技术取得快速发展,但由DeepFake自动生成的人脸替换图片有可能危害人们的隐私安全。针对DeepFake图片鉴别问题,建立一种基于多通道注意力机制的深度学习鉴别网络模型。将Xception网络作为基础特征提取器,在多通道注意力模块中通过矩阵相乘的思想融合全局和局部的注意力表示,以减少重要信息损失。设计损失函数时添加中心损失,从而提高特征区分度。在训练过程中利用注意力图来引导训练图像的裁剪和去除,以达到数据增强的目的。实验结果表明,相比Xception、B4Att方法,在FaceForensics++数据集上该网络模型对DeepFake的检测精度分别提高0.77和0.45个百分点,在Celeb-DF数据集上分别提高5.30和4.68个百分点。 展开更多
关键词 人脸替换 多通道注意力机制 图片鉴别 xception网络 深度学习
在线阅读 下载PDF
XSSD-P:改进的SSD行人检测算法 被引量:3
16
作者 鲍文斌 张冬泉 《计算机工程与应用》 CSCD 北大核心 2022年第23期132-141,共10页
SSD(single shot multi-box detector)是目前广泛应用于行人检测的神经网络算法,为了提高其检测精度和检测速度,对SSD算法进行了有效改进(改进后的算法称为XSSD-P)。选择Xception网络作为XSSD-P算法的骨干网络并重新选择用于预测的特征... SSD(single shot multi-box detector)是目前广泛应用于行人检测的神经网络算法,为了提高其检测精度和检测速度,对SSD算法进行了有效改进(改进后的算法称为XSSD-P)。选择Xception网络作为XSSD-P算法的骨干网络并重新选择用于预测的特征层;根据行人外形尺寸的特征设计了多尺度卷积核和基础锚框,并将二者耦合,基础锚框通过调节自身大小得到锚框(anchors)用于位置回归;再使用深度可分离卷积代替常规卷积在特征图上进行预测,实现了行人的有效检测。在INRIA数据集、VOC数据集和COCO数据集上进行检测精度对比测试,与SSD以及其他主流算法相比,XSSD-P算法在行人检测方面拥有更高的检测精度,并在Caltech行人数据集和MIT行人数据集中验证了XSSD-P算法的泛化性能。在检测速度方面,与SSD算法相比,XSSD-P算法的检测速度高出30 FPS,提高了42.86%。实验结果表明,XSSD-P的检测精度和检测速度均优于SSD算法。 展开更多
关键词 行人检测 SSD算法 卷积神经网络 多尺度卷积核 xception网络
在线阅读 下载PDF
基于Mixup算法和卷积神经网络的柑橘黄龙病果实识别研究 被引量:25
17
作者 陆健强 林佳翰 +4 位作者 黄仲强 王卫星 邱洪斌 杨瑞帆 陈平福 《华南农业大学学报》 CAS CSCD 北大核心 2021年第3期94-101,共8页
【目的】解决传统柑橘黄龙病果实图像识别方法依赖人工设计特征、费时费力、网络模型参数量大、识别准确率低等问题。【方法】首先,采集柑橘黄龙病的果实图像,并对其进行翻转、旋转、仿射、高斯扰动等数据扩增;采用Mixup算法建立样本之... 【目的】解决传统柑橘黄龙病果实图像识别方法依赖人工设计特征、费时费力、网络模型参数量大、识别准确率低等问题。【方法】首先,采集柑橘黄龙病的果实图像,并对其进行翻转、旋转、仿射、高斯扰动等数据扩增;采用Mixup算法建立样本之间的线性关系,增强模型识别数据样本的鲁棒性;然后,迁移Xception网络在ImageNet数据集上的先验知识,提出一种基于Mixup算法和卷积神经网络的柑橘黄龙病果实识别模型-XResNeXt模型;最后,采用动量梯度下降优化方法,有效地减缓震荡影响,并且有效地加速模型向局部最优点收敛。【结果】采用数据扩增数据集训练的X-ResNeXt模型准确率可以达到91.38%;在进行迁移学习优化后,训练时间减少了432 s,准确率提升为91.97%;结合Mixup混类数据增强进一步训练,模型准确率提升为93.74%;最后,利用动量梯度下降方法进行模型收敛优化,最终模型的准确率达到94.29%,比Inception-V3和Xception网络分别提高了3.98%和1.51%。【结论】在数据量较少情况下,降低模型复杂度并迁移已有先验知识,有助于模型性能提升;Mixup混类数据增强方法有利于提高模型识别柑橘黄龙病果实图像样本的适应性,提升柑橘黄龙病果实识别模型性能;X-ResNeXt模型在准确率与召回率指标上优于经典识别模型,可为柑橘黄龙病的高精度、快速无损识别提供参考。 展开更多
关键词 柑橘黄龙病 Mixup算法 梯度下降 卷积神经网络 xception网络
在线阅读 下载PDF
基于改进DeeplabV3+模型的云检测 被引量:2
18
作者 钟旭辉 谭海 +2 位作者 梁雪莹 潘明 石一剑 《遥感信息》 CSCD 北大核心 2023年第3期106-113,共8页
国产卫星影像数量的快速增长对国产影像的质量控制的精度和效率提出更高的要求,而云检测是遥感影像质量检测的首要问题。针对现有云检测的深度学习模型存在误判、漏判和训练需要花费大量时间的问题,研制一套云检测算法具有重要意义。文... 国产卫星影像数量的快速增长对国产影像的质量控制的精度和效率提出更高的要求,而云检测是遥感影像质量检测的首要问题。针对现有云检测的深度学习模型存在误判、漏判和训练需要花费大量时间的问题,研制一套云检测算法具有重要意义。文章提出了一种基于改进DeeplabV3+模型的云检测方法,通过对Xception网络和空间金字塔池化模块(atrous spatial pyramid pooling,ASPP)进行改进,并加入迁移学习,进而提高模型的精度和效率。分析结果表明,该改进的云检测模型与传统的DeeplabV3+模型相比,准确率提高了3.34%,精确率提高了3.78%,召回率提高了4.47%,平均交并比提高了5.39%,且训练时长和预测时长也有明显的减少。 展开更多
关键词 云检测 DeeplabV3+ xception网络 空间金字塔池化模块 迁移学习
在线阅读 下载PDF
基于卷积神经网络和迁移学习的瓯柑病虫害识别研究 被引量:3
19
作者 刘玉耀 彭琼尹 《热带农业科学》 2022年第9期64-70,共7页
传统的瓯柑病虫害检测方式主要依靠人工肉眼查看,效率较低,而且需要检测人员具备丰富的专业知识。针对这些问题,文章提出了基于卷积神经网络和迁移学习的瓯柑病虫害识别方法。首先选取Xception、InceptionResNetV2、MobileNetV2、DenseN... 传统的瓯柑病虫害检测方式主要依靠人工肉眼查看,效率较低,而且需要检测人员具备丰富的专业知识。针对这些问题,文章提出了基于卷积神经网络和迁移学习的瓯柑病虫害识别方法。首先选取Xception、InceptionResNetV2、MobileNetV2、DenseNet121四种深度卷积模型,然后采用迁移学习策略,将各个模型在PlantVillage数据上训练得到预训练模型,迁移到瓯柑病虫害识别模型中,并对比各个模型的识别性能。结果表明:(1)迁移学习能够大大提高模型的泛化能力,经过迁移学习后,4种模型在瓯柑病虫害训练集和验证集上的准确率均达到了85%以上,其中Xception迁移模型表现最好,准确率在训练集和验证集上分别为99.3%,97.1%;(2)在测试集上,Xception迁移模型的整体性能优于其他3种迁移模型,总体测试准确率达到了97.38%,精确率、召回率和F1 Score也均达到了97%以上。综上所述,Xception迁移模型识别精确率高,实用性强,可为今后瓯柑病虫害防控提供参考。 展开更多
关键词 瓯柑病虫害 卷积神经网络 迁移学习 PlantVillage xception迁移模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部