As a typical sedimentary soft rock,mudstone has the characteristics of being easily softened and disintegrated under the effect of wetting and drying(WD).The first cycle of WD plays an important role in the entire WD ...As a typical sedimentary soft rock,mudstone has the characteristics of being easily softened and disintegrated under the effect of wetting and drying(WD).The first cycle of WD plays an important role in the entire WD cycles.X-ray micro-computed tomography(micro-CT)was used as a non-destructive tool to quantitatively analyze microstructural changes of the mudstone due to the first cycle of WD.The test results show that WD leads to an increase of pore volume and pore connectivity in the mudstone.The porosity and fractal dimension of each slice of mudstone not only increase in value,but also in fluctuation amplitude.The pattern of variation in the frequency distribution of the equivalent radii of connected,isolated pores and pore throats in mudstone under WD effect satisfies the Gaussian distribution.Under the effect of WD,pores and pore throats with relatively small sizes increase the most.The sphericity of the pores in mudstones is positively correlated with the pore radius.The WD effect transforms the originally angular and flat pores into round and regular pores.This paper can provide a reference for the study of the deterioration and catastrophic mechanisms of mudstone under wetting and drying cycles.展开更多
A high speed steel composite roll billet was fabricated, which is regular in shape, smooth in surface, slight in trace, compact in internal structure, free of slag inclusion, shrinkage cavity, cracks and other flaws, ...A high speed steel composite roll billet was fabricated, which is regular in shape, smooth in surface, slight in trace, compact in internal structure, free of slag inclusion, shrinkage cavity, cracks and other flaws, and good in macro quality of junction surface using a vertical continuous casting machine. The interface zone microstructure of bimetallic in billet of high speed steel composite roll was analyzed by metallurgical microscope(OM), X-ray diffractmeter(XRD), scanning electron microscopy(SEM) and energy-dispersive X-ray analysis(EDS). The results indicate that the microstructure of roll billet is composed of chilled solidified layer, dendrite zone, interfacial zone of bimetal and core material zone. The microstructure of outer shell material is composed of martensite + bainite + residual austenite + some small labyrinth-shape, small-short lath-shape, or dollop-shape eutectic carbides. The microstructure of core material is slice-shape pearlite and a little ferrite along boundary of cells. The interface region microstructure of bimetallic composite roll consists of diffusion region, chilled solidified layer and columnar grain region.展开更多
Sodium fluoride and high specific area silica were synthesized by using sodium hexafluorosilicate(Na2Si F6) and sodium carbonate decahydrate(Na2CO3·10H2O). The influencing factors of react temperature, contact ti...Sodium fluoride and high specific area silica were synthesized by using sodium hexafluorosilicate(Na2Si F6) and sodium carbonate decahydrate(Na2CO3·10H2O). The influencing factors of react temperature, contact time, sodium dodecyl sulfate(SDS) and molar ratio of Na2 Si F6 to Na2CO3·10H2O were investigated. The optimum process involves the reaction of 0.075 mol Na2 Si F6 and 150 m L, 0.225 mol Na2CO3·10H2O(molar ratio of 1:3) at 85 °C for 90 min, and 2.0×10-3 mol sodium dodecyl sulfate(SDS) as additive. The results show that the purities of Si O2 and Na F at extraction yields of 96.5% and 98.0% are 91.0% and 98.6%, respectively. The obtained Si O2 were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), Fourier transform infrared ray(FTIR), differential scanning calorimetry and thermogravimetric analysis(DSC-TGA), N2 absorption/desorption(BET) and laser particle size analyzer. The result demonstrates that Si O2 particles have a high BET surface area of 103 m2/g, and a mean grain size of 985 nm.展开更多
Microarc oxidation (MAO) coatings were prepared on 2024 aluminum alloy in a Na2SiO3-KOH electrolyte with KNinO4 addition varying from 0 to 4 g/L. The microstructure and phases of the coatings were characterized by s...Microarc oxidation (MAO) coatings were prepared on 2024 aluminum alloy in a Na2SiO3-KOH electrolyte with KNinO4 addition varying from 0 to 4 g/L. The microstructure and phases of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD), respectively. The corrosion resistance of MAO coatings was evaluated by electrochemical potentiodynamic polarization in 5% (mass fraction) NaCl solution. The results show that when KMnO4 is added into base electrolyte, the growth speed of oxide coatings is increased obviously. The main phase of oxide coatings is Al2O3, and the contents of MnO2 and MnEA104 phases are increased at the top of oxide coatings with increasing the concentration of KMnO4. The solute elements participate in forming the oxide coatings. When a proper concentration of KMnO4 (2.5 g/L) is added into the base solution, the micropores of the MAO coatings are small and compact, and the corrosion resistance of oxide coatings is increased largely.展开更多
Carbon-carbon composite (C/C) materials are prone to severe oxidation and volatilization problems. To address these issues, mullite (3Al2O3.2SiO2)/silicon carbide (SIC) coatings were deposited on C/C composite s...Carbon-carbon composite (C/C) materials are prone to severe oxidation and volatilization problems. To address these issues, mullite (3Al2O3.2SiO2)/silicon carbide (SIC) coatings were deposited on C/C composite substrates characterized into high and low densities. The coatings were applied by a two-step approach: pack cementation and silica sol based slurry coating processes. The relationship between the microstructure of 3Al2O3·2SiO2/SiC coatings and C/C substrates during isothermal oxidation cycle at 1 500 ℃ was investigated using X-ray diffractometer (XRD) and scanning electron microscope (SEM) mounted with energy dispersive spectrometer (EDS). The results indicate that the density of the substrates has a marked effect on the coatings. Dense, thick and well-bonded coatings are obtained in the high density substrate. After 106 h of isothermal oxidation, the high density substrate with 3Al2O3-2SiO2/SiC coating offers effective protection as compared to low density substrate suffering recession.展开更多
The effects of alkali oxides (Na2O and K2O addition on both the sintering behavior and dielectric properties of Ca-AI-B-Si-O glass/Al2O3 composites were investigated by Fourier transform infrared spectroscopy (FTIR...The effects of alkali oxides (Na2O and K2O addition on both the sintering behavior and dielectric properties of Ca-AI-B-Si-O glass/Al2O3 composites were investigated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results show that the increasing amount of alkali oxides in the glass causes the decrease of [SiO4], which results in the decrease of the continuity of glass network, and leads to the decrease of the softening temperature Tf of the samples and the increasing trend of crystallization. And that deduces corresponding rise of densification, dielectric constant, dielectric loss of the low temperature co-fired ceramic (LTCC) materials and the decrease of its thermal conductivity. By contrast, the borosilicate glass/A1203 composites with 1.5% (mass fraction) alkali oxides sintered at 875 ℃ for 30 rain exhibit better properties of a bulk density of 2.79 g/cm3, a porosity of 0.48%, a 2 value of 2.28 W/(m.K), a er value of 7.82 and a tand value of 9.1 × 10-4 (measured at 10 MHz).展开更多
基金Project(41877240)supported by the National Natural Science Foundation of China。
文摘As a typical sedimentary soft rock,mudstone has the characteristics of being easily softened and disintegrated under the effect of wetting and drying(WD).The first cycle of WD plays an important role in the entire WD cycles.X-ray micro-computed tomography(micro-CT)was used as a non-destructive tool to quantitatively analyze microstructural changes of the mudstone due to the first cycle of WD.The test results show that WD leads to an increase of pore volume and pore connectivity in the mudstone.The porosity and fractal dimension of each slice of mudstone not only increase in value,but also in fluctuation amplitude.The pattern of variation in the frequency distribution of the equivalent radii of connected,isolated pores and pore throats in mudstone under WD effect satisfies the Gaussian distribution.Under the effect of WD,pores and pore throats with relatively small sizes increase the most.The sphericity of the pores in mudstones is positively correlated with the pore radius.The WD effect transforms the originally angular and flat pores into round and regular pores.This paper can provide a reference for the study of the deterioration and catastrophic mechanisms of mudstone under wetting and drying cycles.
基金Project(200809123) supported by the National Natural Science Foundation of China
文摘A high speed steel composite roll billet was fabricated, which is regular in shape, smooth in surface, slight in trace, compact in internal structure, free of slag inclusion, shrinkage cavity, cracks and other flaws, and good in macro quality of junction surface using a vertical continuous casting machine. The interface zone microstructure of bimetallic in billet of high speed steel composite roll was analyzed by metallurgical microscope(OM), X-ray diffractmeter(XRD), scanning electron microscopy(SEM) and energy-dispersive X-ray analysis(EDS). The results indicate that the microstructure of roll billet is composed of chilled solidified layer, dendrite zone, interfacial zone of bimetal and core material zone. The microstructure of outer shell material is composed of martensite + bainite + residual austenite + some small labyrinth-shape, small-short lath-shape, or dollop-shape eutectic carbides. The microstructure of core material is slice-shape pearlite and a little ferrite along boundary of cells. The interface region microstructure of bimetallic composite roll consists of diffusion region, chilled solidified layer and columnar grain region.
文摘Sodium fluoride and high specific area silica were synthesized by using sodium hexafluorosilicate(Na2Si F6) and sodium carbonate decahydrate(Na2CO3·10H2O). The influencing factors of react temperature, contact time, sodium dodecyl sulfate(SDS) and molar ratio of Na2 Si F6 to Na2CO3·10H2O were investigated. The optimum process involves the reaction of 0.075 mol Na2 Si F6 and 150 m L, 0.225 mol Na2CO3·10H2O(molar ratio of 1:3) at 85 °C for 90 min, and 2.0×10-3 mol sodium dodecyl sulfate(SDS) as additive. The results show that the purities of Si O2 and Na F at extraction yields of 96.5% and 98.0% are 91.0% and 98.6%, respectively. The obtained Si O2 were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), Fourier transform infrared ray(FTIR), differential scanning calorimetry and thermogravimetric analysis(DSC-TGA), N2 absorption/desorption(BET) and laser particle size analyzer. The result demonstrates that Si O2 particles have a high BET surface area of 103 m2/g, and a mean grain size of 985 nm.
基金Project(2008BAE63B00) supported by the National Key Technologies Research and Development Program of China
文摘Microarc oxidation (MAO) coatings were prepared on 2024 aluminum alloy in a Na2SiO3-KOH electrolyte with KNinO4 addition varying from 0 to 4 g/L. The microstructure and phases of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD), respectively. The corrosion resistance of MAO coatings was evaluated by electrochemical potentiodynamic polarization in 5% (mass fraction) NaCl solution. The results show that when KMnO4 is added into base electrolyte, the growth speed of oxide coatings is increased obviously. The main phase of oxide coatings is Al2O3, and the contents of MnO2 and MnEA104 phases are increased at the top of oxide coatings with increasing the concentration of KMnO4. The solute elements participate in forming the oxide coatings. When a proper concentration of KMnO4 (2.5 g/L) is added into the base solution, the micropores of the MAO coatings are small and compact, and the corrosion resistance of oxide coatings is increased largely.
基金Project(2011CB605805) supported by the National Basic Research Program of ChinaProject(51021063) supported by the Creative Research Group of National Natural Science Foundation of China
文摘Carbon-carbon composite (C/C) materials are prone to severe oxidation and volatilization problems. To address these issues, mullite (3Al2O3.2SiO2)/silicon carbide (SIC) coatings were deposited on C/C composite substrates characterized into high and low densities. The coatings were applied by a two-step approach: pack cementation and silica sol based slurry coating processes. The relationship between the microstructure of 3Al2O3·2SiO2/SiC coatings and C/C substrates during isothermal oxidation cycle at 1 500 ℃ was investigated using X-ray diffractometer (XRD) and scanning electron microscope (SEM) mounted with energy dispersive spectrometer (EDS). The results indicate that the density of the substrates has a marked effect on the coatings. Dense, thick and well-bonded coatings are obtained in the high density substrate. After 106 h of isothermal oxidation, the high density substrate with 3Al2O3-2SiO2/SiC coating offers effective protection as compared to low density substrate suffering recession.
基金Project(2007AA03Z0455) supported by the National High Technology Research and Development Program ("863" Program) of ChinaProject(BE2010194) supported by Science & Technology Pillar Program of Jiangsu in China+3 种基金Project(BE2009168) supported by Science & Technology Pillar Program of Jiangsu in ChinaProject supported by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education InstitutionsProject(KF201103) supported by State Key Laboratory of New Ceramic and Fine Processing Tsinghua UniversityProject(CXZZ12_0415) supported by Innovation Foundation for Graduate Students of Jiangsu Province,China
文摘The effects of alkali oxides (Na2O and K2O addition on both the sintering behavior and dielectric properties of Ca-AI-B-Si-O glass/Al2O3 composites were investigated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results show that the increasing amount of alkali oxides in the glass causes the decrease of [SiO4], which results in the decrease of the continuity of glass network, and leads to the decrease of the softening temperature Tf of the samples and the increasing trend of crystallization. And that deduces corresponding rise of densification, dielectric constant, dielectric loss of the low temperature co-fired ceramic (LTCC) materials and the decrease of its thermal conductivity. By contrast, the borosilicate glass/A1203 composites with 1.5% (mass fraction) alkali oxides sintered at 875 ℃ for 30 rain exhibit better properties of a bulk density of 2.79 g/cm3, a porosity of 0.48%, a 2 value of 2.28 W/(m.K), a er value of 7.82 and a tand value of 9.1 × 10-4 (measured at 10 MHz).