针对水下图像标注数据稀缺导致增强算法泛化性不足的问题,本文提出一种基于均值教师(Mean-Teacher)模型的半监督水下图像增强框架。设计融合光照和梯度先验的多尺度网络(Illumination and Gradient Prior network,IGP-Net)作为均值教师...针对水下图像标注数据稀缺导致增强算法泛化性不足的问题,本文提出一种基于均值教师(Mean-Teacher)模型的半监督水下图像增强框架。设计融合光照和梯度先验的多尺度网络(Illumination and Gradient Prior network,IGP-Net)作为均值教师模型的主干网络。IGP-Net包括以下3个模块:多尺度照明感知模块MSLP,用来提取退化图像的多尺度特征,并融合光照和梯度先验,提升水下图像对比度;多通道细节增强模块MCE,对初步增强图像进行通道维拆分和颜色补偿,改善水下图像颜色失真现象;并行注意力模块PC,利用像素注意力和通道注意力进一步关注照明信息和颜色信息之间的关联性,实现色彩均衡。在公开数据集上的定量比较和定性分析表明,本文所提方法在多个关键指标上优于现有先进算法。此外,在水下目标检测任务中的实验,也表明了经本文算法增强后的图像能够有效提升水下目标检测的性能。展开更多
文摘针对水下图像标注数据稀缺导致增强算法泛化性不足的问题,本文提出一种基于均值教师(Mean-Teacher)模型的半监督水下图像增强框架。设计融合光照和梯度先验的多尺度网络(Illumination and Gradient Prior network,IGP-Net)作为均值教师模型的主干网络。IGP-Net包括以下3个模块:多尺度照明感知模块MSLP,用来提取退化图像的多尺度特征,并融合光照和梯度先验,提升水下图像对比度;多通道细节增强模块MCE,对初步增强图像进行通道维拆分和颜色补偿,改善水下图像颜色失真现象;并行注意力模块PC,利用像素注意力和通道注意力进一步关注照明信息和颜色信息之间的关联性,实现色彩均衡。在公开数据集上的定量比较和定性分析表明,本文所提方法在多个关键指标上优于现有先进算法。此外,在水下目标检测任务中的实验,也表明了经本文算法增强后的图像能够有效提升水下目标检测的性能。