To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to tr...To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to transmit signals in a time slot when it forwards the primary signal.In order to address this limitation,a novel cooperative spectrum sharing scheme is proposed,where the secondary transmission is multiplexed with both the primary transmission and the relay transmission.Specifically,the process of transmission is on a three-phase time-switching relaying basis.In the first phase,a cognitive sensor node SU1 scavenges energy from the primary transmission.In the second phase,another sensor node SU2 and primary transmitter simultaneously transmit signals to the SU1.In the third phase,the node SU1 can assist the primary transmission to acquire the opportunity of spectrum sharing.Joint decoding and interference cancellation technique is adopted at the receivers to retrieve the desired signals.We further derive the closed-form expressions for the outage probabilities of both the primary and secondary systems.Moreover,we address optimization of energy harvesting duration and power allocation coefficient strategy under performance criteria.An effective algorithm is then presented to solve the optimization problem.Simulation results demonstrate that with the optimized solutions,the sensor nodes with the proposed cooperative spectrum sharing scheme can utilize the spectrum in a more efficient manner without deteriorating the performance of the primary transmission,as compared with the existing one-directional scheme in the literature.展开更多
Microstrip transmission lines connecting to the millimeter wave radar chip and antenna significantly affect the radiation efficiency and bandwidth of the antenna.Here,a wideband non-uniform wavy microstrip line for co...Microstrip transmission lines connecting to the millimeter wave radar chip and antenna significantly affect the radiation efficiency and bandwidth of the antenna.Here,a wideband non-uniform wavy microstrip line for complex impedance in automotive radar frequency range is proposed.Unlike the gradient transmission line,the wavy structure is composed of periodically semi-circular segments.By adjusting the radius of the semi-circular,the surface current is varied and concentrated on the semi-circular segments,allowing a wider tunability range of the resonant frequency.The results reveal that the bandwidth of the loaded wavy transmission line antenna improves to 9.37 GHz,which is 5.81 GHz wider than that of the loaded gradient line.The gain and the half power beam width of the loaded antenna are about 14.69 dB and 9.58°,respectively.The proposed non-uniform microstrip line scheme may open up a route for realizing wideband millimeter-wave automotive radar applications.展开更多
The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys th...The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys the research experiments and development efforts related to space solar power stations and microwave wireless power transmission technologies worldwide.The objective is to assess the progress and current state of this technological foundation,determine the necessary focus for developing high-power microwave wireless power transmission technology,and provide clarity on the direction of future technology development in these areas.Finally,a distributed space solar power station plan that is immediately feasible is proposed.展开更多
In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave pow...In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave power beam,a technology known as microwave power transmission(MPT).Due to the vast transmission distance of tens of thousands of kilometers,the power transmitting antenna array must span up to 1 kilometer in diameter.At the same time,the size of the rectifying array on the ground should extend over a few kilometers.This makes the MPT system of SSPSs significantly larger than the existing aerospace engineering system.To design and operate a rational MPT system,comprehensive optimization is required.Taking the space MPT system engineering into consideration,a novel multi-objective optimization function is proposed and further analyzed.The multi-objective optimization problem is modeled mathematically.Beam collection efficiency(BCE)is the primary factor,followed by the thermal management capability.Some tapers,designed to solve the conflict between BCE and the thermal problem,are reviewed.In addition to these two factors,rectenna design complexity is included as a functional factor in the optimization objective.Weight coefficients are assigned to these factors to prioritize them.Radiating planar arrays with different aperture illumination fields are studied,and their performances are compared using the multi-objective optimization function.Transmitting array size,rectifying array size,transmission distance,and transmitted power remaine constant in various cases,ensuring fair comparisons.The analysis results show that the proposed optimization function is effective in optimizing and selecting the MPT system architecture.It is also noted that the multi-objective optimization function can be expanded to include other factors in the future.展开更多
The present investigation introduces a composite frequency selective Rasorber(CFSR)that demonstrates a wide−1 dB transmission band,two high absorption bands with absorptivity higher than 90%,and large oblique incidenc...The present investigation introduces a composite frequency selective Rasorber(CFSR)that demonstrates a wide−1 dB transmission band,two high absorption bands with absorptivity higher than 90%,and large oblique incidence angles up to 60°.The CFSR consists of four functional layers separated by three dielectric slabs,which includes lossless metasurface-Ⅰ(MS-Ⅰ),loss metasurface-Ⅱ(MS-Ⅱ),loss metasurface-Ⅲ(MS-Ⅲ),and a three-dimensional metastructure(3D-MS).MS-Ⅰfunctions as a reflector for two absorption bands with a minimal insertion loss transmission window.MS-Ⅱis designed for high-frequency absorption.MS-Ⅲserves as a low-frequency absorption layer for CFSR and an impedance matching layer for MS-Ⅱ.The design methodologies for the transmission window in MS-III and the introduction of 3D-MS are key to achieving high-performance CFSR.The physical mechanisms of CFSR are explained through equivalent circuit model(ECM)analysis and impedance characterization.Finally,measurement results confirm that the proposed CFSR exhibits a−1 dB transmission band ranging from 8.79 to 10.41 GHz with a minimum insertion loss of 0.44 dB at 9.59 GHz;furthermore,the frequency range where reflection coefficient remains below−10 dB is measured to be between 3.33 and 18.00 GHz,aligning well with simulation outcomes.展开更多
The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.Howe...The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.However,A current limitation lies in the absence of a comprehensive quantitative approach to assess the capabilities of LaWS.To address this issue,a damage effectiveness characterization model for LaWS is established,taking into account the properties of laser transmission through the atmosphere and the thermal damage effects.By employing this model,key parameters pertaining to the effectiveness of laser damage are determined.The impact of various spatial positions and atmospheric conditions on the damage effectiveness of LaWS have been examined,employing simulation experiments with diverse parameters.The conclusions indicate that the damage effectiveness of LaWS is contingent upon the spatial position of the target,resulting in a diminished effectiveness to damage on distant,low-altitude targets.Additionally,the damage effectiveness of LaWS is heavily reliant on the atmospheric condition,particularly in complex settings such as midday and low visibility conditions,where the damage effectiveness is substantially reduced.This paper provides an accurate and effective calculation method for the rapid decisionmaking of the operators.展开更多
猪传染性胃肠炎(Transmissible Gastroenteritis of Swine,TGE)作为一种极具威胁性的猪病,具有高度传染性,传播迅速,可在短时间内席卷整个猪群。从新生仔猪到成年母猪无一幸免,尤其是对哺乳仔猪,常引发严重的呕吐、腹泻和脱水,导致极高...猪传染性胃肠炎(Transmissible Gastroenteritis of Swine,TGE)作为一种极具威胁性的猪病,具有高度传染性,传播迅速,可在短时间内席卷整个猪群。从新生仔猪到成年母猪无一幸免,尤其是对哺乳仔猪,常引发严重的呕吐、腹泻和脱水,导致极高的死亡率,即便幸存仔猪,也可能因生长发育受阻而影响后期养殖收益。展开更多
传统TCP(transmission control protocol)本是为有线网络设计,它假设包丢失全是由网络拥塞引起,这个假设不能适应于MANET (mobile ad hoc network),因为MANET 中除了拥塞丢包以外,还存在由于较高比特误码率、路由故障等因素引起的丢包现...传统TCP(transmission control protocol)本是为有线网络设计,它假设包丢失全是由网络拥塞引起,这个假设不能适应于MANET (mobile ad hoc network),因为MANET 中除了拥塞丢包以外,还存在由于较高比特误码率、路由故障等因素引起的丢包现象.当出现非拥塞因素丢包时,传统 TCP 将错误地触发拥塞控制,从而引起TCP 性能低下.任何改进机制都可以分为发现问题和解决问题两个阶段.首先概括了 MANET 中影响 TCP 性能的若干问题;然后针对发现问题和解决问题两个阶段,详细地对每一阶段中存在的各种可行方法进行了分类、分析和比较;最后指出了 MANET 中 TCP 性能优化的研究方向.展开更多
In order to support the mobility of computers during communication, the transport control protocol (TCP) connections between fixed host and mobile host often traverse wired and wireless networks, and the recovery of t...In order to support the mobility of computers during communication, the transport control protocol (TCP) connections between fixed host and mobile host often traverse wired and wireless networks, and the recovery of the losses due to wireless transmission error is much different from congestion control. This paper analyzes the interaction between TCP and link layer retransmission scheme when the correlated packet are losses handled, indicates that a higher value of the maximum number of successive link layer timeout retransmissions has an adverse effect on TCP ability to perform congestion control rapidly. To achieve a better TCP performance, the paper proposes a strategy combining link-layer selective-reject automatic repeat request (ARQ) with explicit loss notification mechanism, which can respond to congestion quickly while keeping wireless link more reliable, and make TCP react to the different packet losses more suitably.展开更多
基金Project (61201086) supported by the National Natural Science Foundation of ChinaProject (201506375060) supported by the China Scholarship Council+2 种基金Project (2013B090500007) supported by Guangdong Provincial Science and Technology Project,ChinaProject (2014509102205) supported by the Dongguan Municipal Project on the Integration of Industry,Education and Research,ChinaProject (2017GK5019) supported by 2017 Hunan-Tech&Innovation Investment Project,China
文摘To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to transmit signals in a time slot when it forwards the primary signal.In order to address this limitation,a novel cooperative spectrum sharing scheme is proposed,where the secondary transmission is multiplexed with both the primary transmission and the relay transmission.Specifically,the process of transmission is on a three-phase time-switching relaying basis.In the first phase,a cognitive sensor node SU1 scavenges energy from the primary transmission.In the second phase,another sensor node SU2 and primary transmitter simultaneously transmit signals to the SU1.In the third phase,the node SU1 can assist the primary transmission to acquire the opportunity of spectrum sharing.Joint decoding and interference cancellation technique is adopted at the receivers to retrieve the desired signals.We further derive the closed-form expressions for the outage probabilities of both the primary and secondary systems.Moreover,we address optimization of energy harvesting duration and power allocation coefficient strategy under performance criteria.An effective algorithm is then presented to solve the optimization problem.Simulation results demonstrate that with the optimized solutions,the sensor nodes with the proposed cooperative spectrum sharing scheme can utilize the spectrum in a more efficient manner without deteriorating the performance of the primary transmission,as compared with the existing one-directional scheme in the literature.
基金Supported by the National Natural Science Foundation of China( 61974104)。
文摘Microstrip transmission lines connecting to the millimeter wave radar chip and antenna significantly affect the radiation efficiency and bandwidth of the antenna.Here,a wideband non-uniform wavy microstrip line for complex impedance in automotive radar frequency range is proposed.Unlike the gradient transmission line,the wavy structure is composed of periodically semi-circular segments.By adjusting the radius of the semi-circular,the surface current is varied and concentrated on the semi-circular segments,allowing a wider tunability range of the resonant frequency.The results reveal that the bandwidth of the loaded wavy transmission line antenna improves to 9.37 GHz,which is 5.81 GHz wider than that of the loaded gradient line.The gain and the half power beam width of the loaded antenna are about 14.69 dB and 9.58°,respectively.The proposed non-uniform microstrip line scheme may open up a route for realizing wideband millimeter-wave automotive radar applications.
基金Entrusted Fund of National Institute of Information and Communications Technology(NICT),Japan(JPJ012368C02401)。
文摘The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys the research experiments and development efforts related to space solar power stations and microwave wireless power transmission technologies worldwide.The objective is to assess the progress and current state of this technological foundation,determine the necessary focus for developing high-power microwave wireless power transmission technology,and provide clarity on the direction of future technology development in these areas.Finally,a distributed space solar power station plan that is immediately feasible is proposed.
文摘In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave power beam,a technology known as microwave power transmission(MPT).Due to the vast transmission distance of tens of thousands of kilometers,the power transmitting antenna array must span up to 1 kilometer in diameter.At the same time,the size of the rectifying array on the ground should extend over a few kilometers.This makes the MPT system of SSPSs significantly larger than the existing aerospace engineering system.To design and operate a rational MPT system,comprehensive optimization is required.Taking the space MPT system engineering into consideration,a novel multi-objective optimization function is proposed and further analyzed.The multi-objective optimization problem is modeled mathematically.Beam collection efficiency(BCE)is the primary factor,followed by the thermal management capability.Some tapers,designed to solve the conflict between BCE and the thermal problem,are reviewed.In addition to these two factors,rectenna design complexity is included as a functional factor in the optimization objective.Weight coefficients are assigned to these factors to prioritize them.Radiating planar arrays with different aperture illumination fields are studied,and their performances are compared using the multi-objective optimization function.Transmitting array size,rectifying array size,transmission distance,and transmitted power remaine constant in various cases,ensuring fair comparisons.The analysis results show that the proposed optimization function is effective in optimizing and selecting the MPT system architecture.It is also noted that the multi-objective optimization function can be expanded to include other factors in the future.
基金Project(2021RC3003) supported by the Hunan Science and Technology Innovation Talents Program,China。
文摘The present investigation introduces a composite frequency selective Rasorber(CFSR)that demonstrates a wide−1 dB transmission band,two high absorption bands with absorptivity higher than 90%,and large oblique incidence angles up to 60°.The CFSR consists of four functional layers separated by three dielectric slabs,which includes lossless metasurface-Ⅰ(MS-Ⅰ),loss metasurface-Ⅱ(MS-Ⅱ),loss metasurface-Ⅲ(MS-Ⅲ),and a three-dimensional metastructure(3D-MS).MS-Ⅰfunctions as a reflector for two absorption bands with a minimal insertion loss transmission window.MS-Ⅱis designed for high-frequency absorption.MS-Ⅲserves as a low-frequency absorption layer for CFSR and an impedance matching layer for MS-Ⅱ.The design methodologies for the transmission window in MS-III and the introduction of 3D-MS are key to achieving high-performance CFSR.The physical mechanisms of CFSR are explained through equivalent circuit model(ECM)analysis and impedance characterization.Finally,measurement results confirm that the proposed CFSR exhibits a−1 dB transmission band ranging from 8.79 to 10.41 GHz with a minimum insertion loss of 0.44 dB at 9.59 GHz;furthermore,the frequency range where reflection coefficient remains below−10 dB is measured to be between 3.33 and 18.00 GHz,aligning well with simulation outcomes.
基金supported by the National Social Science Foundation of China(2022-SKJJ-C-037)the National Natural Science Foundation of China General Program(72071209).
文摘The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.However,A current limitation lies in the absence of a comprehensive quantitative approach to assess the capabilities of LaWS.To address this issue,a damage effectiveness characterization model for LaWS is established,taking into account the properties of laser transmission through the atmosphere and the thermal damage effects.By employing this model,key parameters pertaining to the effectiveness of laser damage are determined.The impact of various spatial positions and atmospheric conditions on the damage effectiveness of LaWS have been examined,employing simulation experiments with diverse parameters.The conclusions indicate that the damage effectiveness of LaWS is contingent upon the spatial position of the target,resulting in a diminished effectiveness to damage on distant,low-altitude targets.Additionally,the damage effectiveness of LaWS is heavily reliant on the atmospheric condition,particularly in complex settings such as midday and low visibility conditions,where the damage effectiveness is substantially reduced.This paper provides an accurate and effective calculation method for the rapid decisionmaking of the operators.
文摘猪传染性胃肠炎(Transmissible Gastroenteritis of Swine,TGE)作为一种极具威胁性的猪病,具有高度传染性,传播迅速,可在短时间内席卷整个猪群。从新生仔猪到成年母猪无一幸免,尤其是对哺乳仔猪,常引发严重的呕吐、腹泻和脱水,导致极高的死亡率,即便幸存仔猪,也可能因生长发育受阻而影响后期养殖收益。
基金National Natural Science Foundation of China(69874025).
文摘In order to support the mobility of computers during communication, the transport control protocol (TCP) connections between fixed host and mobile host often traverse wired and wireless networks, and the recovery of the losses due to wireless transmission error is much different from congestion control. This paper analyzes the interaction between TCP and link layer retransmission scheme when the correlated packet are losses handled, indicates that a higher value of the maximum number of successive link layer timeout retransmissions has an adverse effect on TCP ability to perform congestion control rapidly. To achieve a better TCP performance, the paper proposes a strategy combining link-layer selective-reject automatic repeat request (ARQ) with explicit loss notification mechanism, which can respond to congestion quickly while keeping wireless link more reliable, and make TCP react to the different packet losses more suitably.