期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Re-entry trajectory optimization using a multiple- interval Radau pseudospectral method 被引量:5
1
作者 韩鹏 单家元 孟秀云 《Journal of Beijing Institute of Technology》 EI CAS 2013年第1期20-27,共8页
Aiming at increasing the calculation efficiency of the pseudospectral methods, a multiple- interval Radau pseudospectral method (RPM) is presented to generate a reusable launch vehicle (RLV) 's optimal re-entry t... Aiming at increasing the calculation efficiency of the pseudospectral methods, a multiple- interval Radau pseudospectral method (RPM) is presented to generate a reusable launch vehicle (RLV) 's optimal re-entry trajectory. After dividing the optimal control problem into many intervals, the state and control variables are approximated using many fixed- and low-degree Lagrange polyno- mials in each interval. Convergence of the numerical discretization is then achieved by increasing the number of intervals. With the application of the proposed method, the normal nonlinear program- ming (NLP) problem transcribed from the optimal control problem can avoid being dense because of the low-degree approximation polynomials in each interval. Thus, the NLP solver can easily compute a solution. Finally, simulation results show that the optimized re-entry trajectories satisfy the path constraints and the boundary constraints successfully. Compared with the single interval RPM, the multiple-interval RPM is significantly faster and has higher calculation efficiency. The results indicate that the multiple-interval RPM can be applied for real-time trajectory generation due to its high effi- ciency and high precision. 展开更多
关键词 reusable launch vehicle (RLV) trajectory optimization calculation efficiency multi-pie-interval Radau pseudospectral method (RPM)
在线阅读 下载PDF
UAVs cooperative task assignment and trajectory optimization with safety and time constraints 被引量:2
2
作者 Duo Zheng Yun-fei Zhang +1 位作者 Fan Li Peng Cheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期149-161,共13页
This paper proposes new methods and strategies for Multi-UAVs cooperative attacks with safety and time constraints in a complex environment.Delaunay triangle is designed to construct a map of the complex flight enviro... This paper proposes new methods and strategies for Multi-UAVs cooperative attacks with safety and time constraints in a complex environment.Delaunay triangle is designed to construct a map of the complex flight environment for aerial vehicles.Delaunay-Map,Safe Flight Corridor(SFC),and Relative Safe Flight Corridor(RSFC)are applied to ensure each UAV flight trajectory's safety.By using such techniques,it is possible to avoid the collision with obstacles and collision between UAVs.Bezier-curve is further developed to ensure that multi-UAVs can simultaneously reach the target at the specified time,and the trajectory is within the flight corridor.The trajectory tracking controller is also designed based on model predictive control to track the planned trajectory accurately.The simulation and experiment results are presented to verifying developed strategies of Multi-UAV cooperative attacks. 展开更多
关键词 MULTI-UAV Cooperative attacks Task assignment trajectory optimization Safety constraints
在线阅读 下载PDF
Three-Dimensional Trajectory Optimization for Secure UAV-Enabled Cognitive Communications 被引量:2
3
作者 Yuhan Jiang Jia Zhu 《China Communications》 SCIE CSCD 2021年第12期285-296,共12页
Unmanned aerial vehicles(UAVs)are en-visioned as a promising means of providing wireless services for various complex terrains and emergency situations.In this paper,we consider a wireless UAV-enabled cognitive commun... Unmanned aerial vehicles(UAVs)are en-visioned as a promising means of providing wireless services for various complex terrains and emergency situations.In this paper,we consider a wireless UAV-enabled cognitive communication network,where a rotary-wing UAV transmits confidential information to a ground cognitive user over the spectrum assigned to primary users(PUs),while eavesdroppers attempt to wiretap the legitimate transmission.In order to en-hance the secrecy performance of wireless communi-cations,the secrecy rate(SR)of the UAV-enabled cog-nitive communication system is maximized through optimizing UAV three-dimensional(3D)flying trajec-tory while satisfying the requirements of UAV’s initial and final locations and guaranteeing the constraint of maximum speed of UAV and the interference thresh-old of each PU.However,the formulated SR maxi-mization(SRM)problem is non-convex.For the pur-pose of dealing with this intractable problem,we em-ploy the difference of two-convex functions approxi-mation approach to convert the non-convex optimiza-tion problem into a convex one,which is then solved through applying standard convex optimization tech-niques.Moreover,an iterative 3D trajectory opti-mization algorithm for SRM scheme is proposed to achieve the near-optimal 3D trajectory.Simulation re-sults show that our proposed 3D trajectory optimiza-tion based SRM algorithm has good convergence,and the proposed SRM scheme outperforms the bench-mark approach in terms of the SR performance. 展开更多
关键词 UAV-enabled cognitive communications physical-layer security trajectory optimization
在线阅读 下载PDF
Analysis of Controlled Trajectory Optimization for Canard Trajectory Correction Fuze 被引量:1
4
作者 郭泽荣 李世义 申强 《Journal of Beijing Institute of Technology》 EI CAS 2004年第4期410-413,共4页
The optimization method of the canard trajectory correction fuze's controlled trajectory phase is researched by using the aerodynamics of aerocraft and the optimal control theory, the trajectory parameters of the ... The optimization method of the canard trajectory correction fuze's controlled trajectory phase is researched by using the aerodynamics of aerocraft and the optimal control theory, the trajectory parameters of the controlled trajectory phase based on the least energy cost are determined. On the basis of determining the control starting point and the target point, the optimal trajectory and the variation rule of the normal overload with the least energy cost are provided, when there is no time restriction in the simulation process. The results provide a theoretical basis for the structure design of the canard mechanism. 展开更多
关键词 trajectory correction trajectory optimization FUZE OVERLOAD
在线阅读 下载PDF
Autonomous UAV 3D trajectory optimization and transmission scheduling for sensor data collection on uneven terrains
5
作者 Andrey V.Savkin Satish C.Verma Wei Ni 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第12期154-160,共7页
This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors ha... This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors harvest renewable energy and are equipped with batteries and data buffers.The ground sensor model takes into account sensor data buffer and battery limitations.An asymptotically globally optimal method of joint UAV 3D trajectory optimization and data transmission schedule is developed.The developed method maximizes the amount of data transmitted to the UAV without losses and too long delays and minimizes the propulsion energy of the UAV.The developed algorithm of optimal trajectory optimization and transmission scheduling is based on dynamic programming.Computer simulations demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 Unmanned aerial system UAS Unmanned aerial vehicle UAV Wireless sensor networks UAS-Assisted data collection 3D trajectory optimization Data transmission scheduling
在线阅读 下载PDF
Cooperative trajectory optimization of UAVs in approaching stage using feedback guidance methods
6
作者 Hao-ran Shi Fa-xing Lu Ling Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期361-381,共21页
This paper mainly studies the problem of using UAVs to provide accurate remote target indication for hypersonic projectiles.Based on the optimal trajectory trends and feedback guidance methods,a new cooperative contro... This paper mainly studies the problem of using UAVs to provide accurate remote target indication for hypersonic projectiles.Based on the optimal trajectory trends and feedback guidance methods,a new cooperative control algorithm is proposed to optimize trajectories of multi-UAVs for target tracking in approaching stage.Based on UAV kinematics and sensor performance models,optimal trajectory trends of UAVs are analyzed theoretically.Then,feedback guidance methods are proposed under the optimal observation trends of UAVs in the approaching target stage,producing trajectories with far less computational complexity and performance very close to the best-known trajectories.Next,the sufficient condition for the UAV to form the optimal observation configuration by the feedback guidance method is presented,which guarantees that the proposed method can optimize the observation trajectory of the UAV in approaching stage.Finally,the feedback guidance method is numerically simulated.Simulation results demonstrate that the estimation performance of the feedback guidance method is superior to the Lyapunov guidance vector field(LGVF)method and verify the effectiveness of the proposed method.Additionally,compared with the receding horizon optimization(RHO)method,the proposed method has the same optimization ability as the RHO method and better real-time performance. 展开更多
关键词 Unmanned aerial vehicles(UAVs) Target tracking trajectory optimization Receding horizon optimization(RHO) Feedback guidance method
在线阅读 下载PDF
Trajectory Optimization for 7-Dofs Space Manipulator
7
作者 Wencheng Ni Zhihong Jiang +4 位作者 Hui Li Bo Wei Xiaoyun Li Bainan Zhang Qiang Huang 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期143-149,共7页
The space manipulator is always designed to have 7 degrees of freedom(Dofs)with the consideration of energy limitation,as well as the flexible moving possibility.Therefore,how to plan the trajectory is important to ... The space manipulator is always designed to have 7 degrees of freedom(Dofs)with the consideration of energy limitation,as well as the flexible moving possibility.Therefore,how to plan the trajectory is important to improve the performance of the manipulator.In this paper,the speed of the end effector is configured as a projecting parameter,when a constant acceleration is applied to adjust the velocity.To implement this trajectory planning strategy,an optimization algorithm through the pseudo inverse of Jacobin matrix is designed,which adjusts the weight functions of joints.According to the functional theory,this algorithm is analyzed and the optimal solution is found in numerous sets of planning.A MATLAB simulation platform is established and the results verity the effectiveness of the algorithm. 展开更多
关键词 redundant degree of freedom space manipulator trajectory optimization
在线阅读 下载PDF
THREE-DIMENSIONAL TRAJECTORY OPTIMIZATION WITH DIRECT METHOD 被引量:1
8
作者 沈春林 刘国刚 +1 位作者 吴文海 李丽荣 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2002年第2期118-122,共5页
The principle of direct method used in optimal control problem is introduced. Details of applying this method to flight trajectory generation are presented including calculation of velocity and controls histories. And... The principle of direct method used in optimal control problem is introduced. Details of applying this method to flight trajectory generation are presented including calculation of velocity and controls histories. And capabilities of flight and propulsion systems are considered also. Combined with digital terrain map technique, the direct method is applied to the three dimensional trajectory optimization for low altitude penetration, and simplex algorithm is used to solve the parameters in optimization. For the small number of parameters, the trajectory can be optimized in real time on board. 展开更多
关键词 direct optimization method trajectory optimization low altitude penetration simplex algorithm
在线阅读 下载PDF
Joint Trajectory and Passive Beamforming Optimization in IRS-UAV Enhanced Anti-Jamming Communication Networks 被引量:7
9
作者 Zhifeng Hou Jin Chen +5 位作者 Yuzhen Huang Yijie Luo Ximing Wang Jiangchun Gu Yifan Xu Kailing Yao 《China Communications》 SCIE CSCD 2022年第5期191-205,共15页
This paper investigates the anti-jamming communication scenario where an intelligent reflecting surface(IRS)is mounted on the unmanned aerial vehicle(UAV)to resist the malicious jamming attacks.Different from existing... This paper investigates the anti-jamming communication scenario where an intelligent reflecting surface(IRS)is mounted on the unmanned aerial vehicle(UAV)to resist the malicious jamming attacks.Different from existing works,we consider the dynamic deployment of IRS-UAV in the environment of the mobile user and unknown jammer.Therefore,a joint trajectory and passive beamforming optimization approach is proposed in the IRS-UAV enhanced networks.In detail,the optimization problem is firstly formulated into a Markov decision process(MDP).Then,a dueling double deep Q networks multi-step learning algorithm is proposed to tackle the complex and coupling decision-making problem.Finally,simulation results show that the proposed scheme can significantly improve the anti-jamming communication performance of the mobile user. 展开更多
关键词 intelligent reflecting surface unmanned aerial vehicle deep reinforcement learning trajectory optimization
在线阅读 下载PDF
An Energy-Efficient UAV Deployment Scheme for Emergency Communications in Air-Ground Networks with Joint Trajectory and Power Optimization 被引量:3
10
作者 Shuo Zhang Shuo Shi +2 位作者 Weizhi Wang Zhenyu Xu Xuemai Gu 《China Communications》 SCIE CSCD 2022年第7期67-78,共12页
The space-air-ground integrated network(SAGIN)has gained widespread attention from academia and industry in recent years.It is widely applied in many practical fields such as global observation and mapping,intelligent... The space-air-ground integrated network(SAGIN)has gained widespread attention from academia and industry in recent years.It is widely applied in many practical fields such as global observation and mapping,intelligent transportation systems,and military missions.As an information carrier of air platforms,the deployment strategy of unmanned aerial vehicles(UAVs)is essential for communication systems’performance.In this paper,we discuss a UAV broadcast coverage strategy that can maximize energy efficiency(EE)under terrestrial users’requirements.Due to the non-convexity of this issue,conventional approaches often solve with heuristics algorithms or alternate optimization.To this end,we propose an iterative algorithm by optimizing trajectory and power allocation jointly.Firstly,we discrete the UAV trajectory into several stop points and propose a user grouping strategy based on the traveling salesman problem(TSP)to acquire the number of stop points and the optimization range.Then,we use the Dinkelbach method to dispose of the fractional form and transform the original problem into an iteratively solvable convex optimization problem by variable substitution and Taylor approximation.Numerical results validate our proposed solution and outperform the benchmark schemes in EE and mission completion time. 展开更多
关键词 SAGIN UAV energy efficiency(EE)maximization trajectory optimization power allocation
在线阅读 下载PDF
A Real-Time Near Optimal Trajectory Planning and Control Scheme for Autonomous Wheelchair Evacuation Tasks
11
作者 Kaiyuan Chen Runda Zhang +3 位作者 Miao Wang Yiran Wang Huatang Zeng Wannian Liang 《Journal of Beijing Institute of Technology》 EI CAS 2024年第6期481-492,共12页
Motion planning and control of autonomous mobile robots(AMRs)have attracted widespread attention in recent years.As the problem of aging intensifies,it is significant to develop AMRs for the wellbeing of old people.In... Motion planning and control of autonomous mobile robots(AMRs)have attracted widespread attention in recent years.As the problem of aging intensifies,it is significant to develop AMRs for the wellbeing of old people.In this paper,a novel long short-term memory(LSTM)-recurrent deep neural network(RDNN)based motion planning and control strategy with data aggregation mechanism is developed for autonomous wheelchairs(AWC)to send the seniors to the exit of the nursing home in a timely manner when emergencies happen.The proposed scheme is verified to be feasible,efficient and robust. 展开更多
关键词 trajectory optimization autonomous mobile robots(AMRs) recurrent deep neural net-work(RDNN) long short-term memory(LSTM)
在线阅读 下载PDF
Optimal Trajectory Generation for Aircraft Engine-Off Taxi Towing System Under Stochastic Constraints
12
作者 Xin Sun Huimin Zhao +1 位作者 Senchun Chai Wu Deng 《Journal of Beijing Institute of Technology》 EI CAS 2024年第6期507-515,共9页
The novel aircraft engine-off taxi towing system featuring aircraft power integration has demonstrated significant advantages,including reduced energy consumption,diminished emissions,and enhanced efficiency.However,t... The novel aircraft engine-off taxi towing system featuring aircraft power integration has demonstrated significant advantages,including reduced energy consumption,diminished emissions,and enhanced efficiency.However,the aircraft engine-off taxi towing system lacks the consideration of attendant constraints in the trajectory generation process,which can potentially lead to ground accidents and constrain the improvement of traction speed.Addressing this challenge,the present work investigates the optimal control problem of trajectory generation for the taxiing traction system in the complex stochastic environment in the airport flight area.For the stochastic constraints,a strategy of deterministic processing is proposed to describe the stochastic constraints using random constraints.Furthermore,an adaptive pseudo-spectral method is introduced to transform the optimal control problem into a nonlinear programming problem,enabling its effective resolution.Simulation results substantiate that the generated trajectory can efficiently handle the stochastic constraints and accomplish the given task towards the time-optimization objective,thereby effectively enhancing the stability and efficiency of the taxiing traction system,ensuring the safety of the aircraft system,and improving the ground access capacity and efficiency of the airport. 展开更多
关键词 stochastic constraints trajectory optimization adaptive pseudo-spectral method
在线阅读 下载PDF
Energy Consumption Minimization for NOMA-Based Secure UAV-MEC Network
13
作者 Zhang Hao Huang Yuzhen +1 位作者 Zhang Zhi Lu Xingbo 《China Communications》 2025年第3期202-216,共15页
Applying non-orthogonal multiple access(NOMA)to the mobile edge computing(MEC)network supported by unmanned aerial vehicles(UAVs)can improve spectral efficiency and achieve massive user access on the basis of solving ... Applying non-orthogonal multiple access(NOMA)to the mobile edge computing(MEC)network supported by unmanned aerial vehicles(UAVs)can improve spectral efficiency and achieve massive user access on the basis of solving computing resource constraints and coverage problems.However,the UAV-enabled network has a serious risk of information leakage on account of the openness of wireless channel.This paper considers a UAV-MEC secure network based on NOMA technology,which aims to minimize the UAV energy consumption.To achieve the purpose while meeting the security and users’latency requirements,we formulate an optimization problem that jointly optimizes the UAV trajectory and the allocation of network resources.Given that the original problem is non-convex and multivariate coupled,we proposed an effective algorithm to decouple the nonconvex problem into independent user relation coefficients and subproblems based on successive convex approximation(SCA)and block coordinate descent(BCD).The simulation results showcase the performance of our optimization scheme across various parameter settings and confirm its superiority over other benchmarks with respect to energy consumption. 展开更多
关键词 MEC NOMA resource optimization secure transmission trajectory optimization UAV
在线阅读 下载PDF
Intelligent Energy-Efficient Resource Allocation for Multi-UAV-Assisted Mobile Edge Computing Networks
14
作者 Hu Han Shen Le +2 位作者 Zhou Fuhui Wang Qun Zhu Hongbo 《China Communications》 2025年第4期339-355,共17页
The unmanned aerial vehicle(UAV)-assisted mobile edge computing(MEC)has been deemed a promising solution for energy-constrained devices to run smart applications with computationintensive and latency-sensitive require... The unmanned aerial vehicle(UAV)-assisted mobile edge computing(MEC)has been deemed a promising solution for energy-constrained devices to run smart applications with computationintensive and latency-sensitive requirements,especially in some infrastructure-limited areas or some emergency scenarios.However,the multi-UAVassisted MEC network remains largely unexplored.In this paper,the dynamic trajectory optimization and computation offloading are studied in a multi-UAVassisted MEC system where multiple UAVs fly over a target area with different trajectories to serve ground users.By considering the dynamic channel condition and random task arrival and jointly optimizing UAVs'trajectories,user association,and subchannel assignment,the average long-term sum of the user energy consumption minimization problem is formulated.To address the problem involving both discrete and continuous variables,a hybrid decision deep reinforcement learning(DRL)-based intelligent energyefficient resource allocation and trajectory optimization algorithm is proposed,named HDRT algorithm,where deep Q network(DQN)and deep deterministic policy gradient(DDPG)are invoked to process discrete and continuous variables,respectively.Simulation results show that the proposed HDRT algorithm converges fast and outperforms other benchmarks in the aspect of user energy consumption and latency. 展开更多
关键词 dynamic trajectory optimization intelligent resource allocation unmanned aerial vehicle uav assisted uav assisted mec energy efficiency smart applications mobile edge computing mec deep reinforcement learning
在线阅读 下载PDF
A novel trajectories optimizing method for dynamic soaring based on deep reinforcement learning
15
作者 Wanyong Zou Ni Li +2 位作者 Fengcheng An Kaibo Wang Changyin Dong 《Defence Technology(防务技术)》 2025年第4期99-108,共10页
Dynamic soaring,inspired by the wind-riding flight of birds such as albatrosses,is a biomimetic technique which leverages wind fields to enhance the endurance of unmanned aerial vehicles(UAVs).Achieving a precise soar... Dynamic soaring,inspired by the wind-riding flight of birds such as albatrosses,is a biomimetic technique which leverages wind fields to enhance the endurance of unmanned aerial vehicles(UAVs).Achieving a precise soaring trajectory is crucial for maximizing energy efficiency during flight.Existing nonlinear programming methods are heavily dependent on the choice of initial values which is hard to determine.Therefore,this paper introduces a deep reinforcement learning method based on a differentially flat model for dynamic soaring trajectory planning and optimization.Initially,the gliding trajectory is parameterized using Fourier basis functions,achieving a flexible trajectory representation with a minimal number of hyperparameters.Subsequently,the trajectory optimization problem is formulated as a dynamic interactive process of Markov decision-making.The hyperparameters of the trajectory are optimized using the Proximal Policy Optimization(PPO2)algorithm from deep reinforcement learning(DRL),reducing the strong reliance on initial value settings in the optimization process.Finally,a comparison between the proposed method and the nonlinear programming method reveals that the trajectory generated by the proposed approach is smoother while meeting the same performance requirements.Specifically,the proposed method achieves a 34%reduction in maximum thrust,a 39.4%decrease in maximum thrust difference,and a 33%reduction in maximum airspeed difference. 展开更多
关键词 Dynamic soaring Differential flatness trajectory optimization Proximal policy optimization
在线阅读 下载PDF
Robust Trajectory and Communication Design for Angle-Constrained Multi-UAV Communications in the Presence of Jammers 被引量:3
16
作者 Yufang Gao Yang Wu +3 位作者 Zhichao Cui Wendong Yang Guojie Hu Shiming Xu 《China Communications》 SCIE CSCD 2022年第2期131-147,共17页
This paper studies a multi-unmanned aerial vehicle(UAV)enabled wireless communication system,where multiple UAVs are employed to communicate with a group of ground terminals(GTs)in the presence of potential jammers.We... This paper studies a multi-unmanned aerial vehicle(UAV)enabled wireless communication system,where multiple UAVs are employed to communicate with a group of ground terminals(GTs)in the presence of potential jammers.We aim to maximize the throughput overall GTs by jointly optimizing the UAVs’trajectory,the GTs’scheduling and power allocation.Unlike most prior studies,we consider the UAVs’turning and climbing angle constraints,the UAVs’three-dimensional(3D)trajectory constraints,minimum UAV-to-UAV(U2U)distance constraint,and the GTs’transmit power requirements.However,the formulated problem is a mixed-integer non-convex problem and is intractable to work it out with conventional optimization methods.To tackle this difficulty,we propose an efficient robust iterative algorithm to decompose the original problem be three sub-problems and acquire the suboptimal solution via utilizing the block coordinate descent(BCD)method,successive convex approximation(SCA)technique,and S-procedure.Extensive simulation results show that our proposed robust iterative algorithm offers a substantial gain in the system performance compared with the benchmark algorithms. 展开更多
关键词 ANTI-JAMMING angle constraints robust design multi-UAV communications 3D trajectory optimization
在线阅读 下载PDF
Anti-Jamming Trajectory Design for UAV-Enabled Wireless Sensor Networks Using Communication Flight Corridor 被引量:1
17
作者 Binbin Wu Bangning Zhang +2 位作者 Daoxing Guo Hongbin Wang Hao Jiang 《China Communications》 SCIE CSCD 2022年第7期37-52,共16页
This paper investigates the anti-jamming trajectory design to safeguard the effective data collection, where a unmanned aerial vehicle(UAV)is dispatched to collect data over multiple sensor nodes(SNs) in jamming envir... This paper investigates the anti-jamming trajectory design to safeguard the effective data collection, where a unmanned aerial vehicle(UAV)is dispatched to collect data over multiple sensor nodes(SNs) in jamming environment. Under the limited power and transmission range of SNs, we aim to minimize the UAV’s flight energy consumption in a finite task period, by jointly optimizing SNs collection sequence and UAV flight trajectory. Firstly, we propose a general optimization framework which consists of path planning and trajectory optimization for the formulated non-convex problem. In the path planning phase, a dynamic programming(DP) algorithm is used to provide the initial path of the UAV, which is the shortest path to visit each SN. In the trajectory optimization phase, we introduce the concept of Communication Flight Corridor(CFC) to meet the non-convex constraints and apply a piecewise Bézier curve, based on Bernoulli polynomial, to represent the flight trajectory of the UAV, which can transform the optimization variables from infinite time variables to polynomial coefficients of finite order. Finally, we simulate the flight trajectory of UAV in hovering mode and continuous flight mode under different parameters, and the simulation results demonstrate the effectiveness of the proposed method. 展开更多
关键词 UAV data collection jamming environment path planning trajectory optimization
在线阅读 下载PDF
An Optimization Method of Formation Flight for Minimizing Fuel Consumption 被引量:1
18
作者 HU Yue DAI Wei PRATS Xavier 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第2期306-315,共10页
A method for formation flight trajectory optimization was established.This method aims at minimizing fuel consumption of a two-aircraft formation flight,without changing the original trajectory of the leader.Candidate... A method for formation flight trajectory optimization was established.This method aims at minimizing fuel consumption of a two-aircraft formation flight,without changing the original trajectory of the leader.Candidate flight pairs were selected from all international flights arriving at or departing from China in one day according to the requirement of the proposed method.Aircraft performance database Base of Aircraft Data(BADA)was employed in the trajectory computation.By assuming different fuel-saving percentages for the following aircraft,pre-flight plan trajectories of formation flight were optimized.The fuel consumption optimization effect under the influence of different trajectory optimization parameters was also analyzed.The results showed that the higher the fuel savings percentage,the longer the flight distance of formation flight,but the smaller the number of formation combinations that can be realized,which is limited by the aircraft performance.The following aircraft flying along the approximate actual flight trajectory can be benefited as well,and the optimal fuel-saving efficiency is related to the expected fuelsaving efficiency of formation flight. 展开更多
关键词 formation flight trajectory optimization fuel-saving Base of Aircraft Data(BADA)
在线阅读 下载PDF
Search Space Pruning Based on Image Tools for Preliminary Interplanetary Trajectory Design
19
作者 杨大林 徐波 高有涛 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第5期530-540,共11页
A novel gravity assist space pruning(GASP)algorithm based on image tools is proposed for solving interplanetary trajectory optimization problem.Compared with traditional GASP algorithm,the concept of image is introduc... A novel gravity assist space pruning(GASP)algorithm based on image tools is proposed for solving interplanetary trajectory optimization problem.Compared with traditional GASP algorithm,the concept of image is introduced to avoid missing interesting solutions with appropriate number of function evaluations.Image tools allow us to evaluate the objective function in regions in place of points and provide an effective way to evaluate the forward and backward constraints for the multi-gravity assist trajectory optimization problem.Since the interesting solutions of the interplanetary trajectory optimization problem are often clustered in a small portion of the search space rather than being overall evenly distributed,the regionwise evaluations with image tools make the little large interval with the proper Lipschitzian tolerances sampling effective.The detailed steps of the proposed method are presented and two examples including Earth Venus Mars(EVM)transfer and Earth Venus Venus Earth Jupiter Saturn(EVVEJS)transfer are given.Finally,a comparison with solutions given by the literature demonstrates the effectiveness of the proposed method. 展开更多
关键词 trajectory optimization global optimization local minima gravity assist space pruning (GASP) algorithm image tool
在线阅读 下载PDF
Flight Range Optimization of Extended Range Guided Munitions 被引量:1
20
作者 夏群力 祁载康 林德福 《Journal of Beijing Institute of Technology》 EI CAS 2002年第4期383-388,共6页
By the study of extended range guided munitions (ERGM) trajectory characteristics, ERGM free-flight and glide trajectory characteristics are revealed and illustrated. On the basis of free-flight trajectory mathematica... By the study of extended range guided munitions (ERGM) trajectory characteristics, ERGM free-flight and glide trajectory characteristics are revealed and illustrated. On the basis of free-flight trajectory mathematical model, a two-parameter optimization problem of quadrant elevation and rocket ignition time is studied. Using the atmosphere mathematical model, the best glide-starting point of the downward trajectory is determined. With an optimal control mathematical model, the ERGM optimal glide trajectory is obtained. 展开更多
关键词 free-flight trajectory parameter optimization optimal glide trajectory
全文增补中
上一页 1 2 下一页 到第
使用帮助 返回顶部