期刊文献+
共找到416篇文章
< 1 2 21 >
每页显示 20 50 100
Convolutional neural networks for time series classification 被引量:52
1
作者 Bendong Zhao Huanzhang Lu +2 位作者 Shangfeng Chen Junliang Liu Dongya Wu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第1期162-169,共8页
Time series classification is an important task in time series data mining, and has attracted great interests and tremendous efforts during last decades. However, it remains a challenging problem due to the nature of ... Time series classification is an important task in time series data mining, and has attracted great interests and tremendous efforts during last decades. However, it remains a challenging problem due to the nature of time series data: high dimensionality, large in data size and updating continuously. The deep learning techniques are explored to improve the performance of traditional feature-based approaches. Specifically, a novel convolutional neural network (CNN) framework is proposed for time series classification. Different from other feature-based classification approaches, CNN can discover and extract the suitable internal structure to generate deep features of the input time series automatically by using convolution and pooling operations. Two groups of experiments are conducted on simulated data sets and eight groups of experiments are conducted on real-world data sets from different application domains. The final experimental results show that the proposed method outperforms state-of-the-art methods for time series classification in terms of the classification accuracy and noise tolerance. © 1990-2011 Beijing Institute of Aerospace Information. 展开更多
关键词 CONVOLUTION Data mining neural networks time series Virtual reality
在线阅读 下载PDF
基于ECA-TCN的数据中心磁盘故障预测 被引量:1
2
作者 张铭泉 王宝兴 《智能系统学报》 北大核心 2025年第2期389-399,共11页
随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-tem... 随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-temporal convolutional network,ECA-TCN)模型,通过结合传统卷积神经网络一维卷积的优势,融入扩张卷积和残差结构,并引入注意力机制,该模型能够提高磁盘故障预测的准确性和稳定性。在实验中,将ECA-TCN模型与其他经典深度学习方法进行了比较,实验结果表明,ECA-TCN模型在磁盘故障预测任务上具有较高的准确性和稳定性。 展开更多
关键词 磁盘故障预测 长短时记忆网络 循环神经网络 扩张卷积 高效通道注意力机制 神经网络模型 时间序列预测 深度学习优化
在线阅读 下载PDF
基于RF-TCN-SA及误差修正的风电功率超短期预测 被引量:1
3
作者 张中丹 李加笑 +3 位作者 冯智慧 赵娟 冯斌 李清霖 《电网与清洁能源》 北大核心 2025年第2期113-119,共7页
为提高风电功率预测精度,提出一种结合随机森林(random forest,RF)、时间卷积神经网络(temporal convolutional network,TCN)以及自注意力机制(self-attention,SA)的预测模型。通过RF算法选择出与风电功率强相关的特征信息作为TCN的输入... 为提高风电功率预测精度,提出一种结合随机森林(random forest,RF)、时间卷积神经网络(temporal convolutional network,TCN)以及自注意力机制(self-attention,SA)的预测模型。通过RF算法选择出与风电功率强相关的特征信息作为TCN的输入,采用Lookahead优化器及PRelu激活函数来提高TCN的学习、收敛性能;通过SA算法为模型不同时刻输入信息分配不同权重,以突出重要时刻信息作用,提高模型预测效果;建立误差修正模型对初步预测值进行修正,进一步提高风电功率预测精度。算例实验结果表明,所提模型相比常见循环神经网络预测模型具有更高的预测精度。 展开更多
关键词 风电功率预测 随机森林 时间卷积神经网络 自注意力机制 误差修正
在线阅读 下载PDF
基于DDTW聚类和SK TCN-GC BiGRU的分布式光伏短期功率预测
4
作者 段宏 郭成 +1 位作者 孙海东 王嵩岭 《智慧电力》 北大核心 2025年第4期71-80,共10页
针对分布式光伏短期功率的准确预测问题,提出了一种基于导数动态时间规整算法(DDTW)聚类和复合注意力预测网络(SK TCN-GC BiGRU)的短期光伏功率预测方法。首先,应用DDTW对历史数据进行相似日分析以构建针对性的训练集。其次,结合选择性... 针对分布式光伏短期功率的准确预测问题,提出了一种基于导数动态时间规整算法(DDTW)聚类和复合注意力预测网络(SK TCN-GC BiGRU)的短期光伏功率预测方法。首先,应用DDTW对历史数据进行相似日分析以构建针对性的训练集。其次,结合选择性内核网络(SKNet)和全局上下文模块(GC Block)优化TCN与BiGRU模型,分别增强提取多尺度特征和全局信息的能力。仿真结果验证了所提模型的优越性,尤其在气象条件数据波动较大的情况下,表现出较强的鲁棒性。 展开更多
关键词 短期光伏功率预测 时间卷积神经网络 双向门控循环单元 导数动态时间弯曲聚类
在线阅读 下载PDF
基于TCN-BiGRU结合自注意力机制的储粮温度预测研究 被引量:3
5
作者 祝玉华 张钰涵 +1 位作者 李智慧 甄彤 《中国农机化学报》 北大核心 2024年第12期133-139,共7页
粮食仓储管理对于国家具有重要意义,储粮温度是判断粮食仓储安全的重要指标之一。准确地预测储粮温度并及时做出相应的防护措施能够有效降低粮食仓储损耗。针对传统储粮温度预测模型预测准确度较低的问题,提出一种融合时域卷积网络(TCN... 粮食仓储管理对于国家具有重要意义,储粮温度是判断粮食仓储安全的重要指标之一。准确地预测储粮温度并及时做出相应的防护措施能够有效降低粮食仓储损耗。针对传统储粮温度预测模型预测准确度较低的问题,提出一种融合时域卷积网络(TCN)、自注意力机制(Self-Attention)和双向门控循环单元(BiGRU)的网络模型。首先通过TCN提取储粮温度数据的局部特征,并根据储粮温度数据的时序特征将自注意力机制加入网络为不同粮情特征分配权重,突出对储粮温度预测影响更大的特征,之后利用BiGRU网络学习粮情序列的双向依赖关系来获取序列中的更多信息,实现对储粮温度的预测。结果表明,所提出的模型均方根误差RMSE为0.389 5,平均绝对误差MAE为0.328 1,确定系数R2为0.991 2,与其他模型相比误差小,预测精度高,能够为粮仓的温度管控提供决策依据。 展开更多
关键词 储粮温度预测 时域卷积网络 自注意力机制 门控循环单元网络
在线阅读 下载PDF
基于TCN的跟网/构网混合型新能源场站并网系统小干扰稳定性快速评估 被引量:5
6
作者 林涛 林政阳 +1 位作者 李晨 李君 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期169-177,共9页
为支撑跟网/构网混合型新能源场站中机组控制方式快速切换,实现可适应电网强度变化的新能源场站安全稳定运行,提出基于时间卷积神经网络(temporal convolutional network,TCN)的跟网/构网混合型新能源场站并网系统小干扰稳定性快速评估... 为支撑跟网/构网混合型新能源场站中机组控制方式快速切换,实现可适应电网强度变化的新能源场站安全稳定运行,提出基于时间卷积神经网络(temporal convolutional network,TCN)的跟网/构网混合型新能源场站并网系统小干扰稳定性快速评估方法。首先,构建跟网/构网混合型新能源场站聚合阻抗模型,通过特征值计算得到并网系统小干扰稳定裕度。然后,以并网系统短路比和新能源场站跟网/构网控制方式信息作为输入特征,以并网系统小干扰稳定裕度和阻尼比作为输出特征,训练TCN得到混合型新能源场站并网系统小干扰稳定性快速评估模型。经过训练的模型可根据短路比和跟网/构网混合型新能源场站中各机组的控制方式快速输出对应的小干扰稳定裕度和阻尼比。最后,以一个含10台风电机组的新能源场站为对象进行算例分析。结果表明:所提TCN方法相比于长短期记忆神经网络方法,在小干扰稳定裕度和阻尼比预测上的平均绝对百分比误差分别降低16.76%、14.75%;所提方法的计算耗时相对于特征值计算方法降低98.54%,从而验证所提小干扰稳定性快速评估方法的准确性与时效性。 展开更多
关键词 新能源场站 跟网型控制 构网型控制 小干扰稳定 时间卷积神经网络
在线阅读 下载PDF
基于TCN和残差自注意力的变工况下滚动轴承剩余寿命迁移预测 被引量:8
7
作者 潘雪娇 董绍江 +2 位作者 朱朋 周存芳 宋锴 《振动与冲击》 EI CSCD 北大核心 2024年第1期145-152,共8页
针对变工况环境下采集到的滚动轴承寿命状态数据存在特征分布差异,深度神经网络模型泛化能力差的问题,结合时间卷积网络(temporal convolutional neural network,TCN)和残差自注意力机制提出了一种端到端的滚动轴承剩余寿命(remaining u... 针对变工况环境下采集到的滚动轴承寿命状态数据存在特征分布差异,深度神经网络模型泛化能力差的问题,结合时间卷积网络(temporal convolutional neural network,TCN)和残差自注意力机制提出了一种端到端的滚动轴承剩余寿命(remaining useful life,RUL)迁移预测方法。首先,将传感器采集到的一维时域信号利用短时傅里叶变换转换为频域信号;其次,剩余寿命迁移预测网络通用特征提取层采用残差自注意力TCN网络,该网络在较好提取时间序列信息的同时,进一步通过残差自注意力机制捕获轴承局部退化特征,增强模型的迁移特征提取能力;再次,采用提出的联合领域自适应策略匹配变工况下滚动轴承寿命状态数据特征分布差异,实现不同工况下轴承寿命状态知识的迁移预测;最后,在公开的滚动轴承全寿命数据集上进行试验验证,结果表明所提方法能有效实现变工况下的滚动轴承RUL预测,并获得较好的预测性能。 展开更多
关键词 剩余寿命(RUL) 滚动轴承 时间卷积网络(tcn) 残差自注意力 迁移学习
在线阅读 下载PDF
基于CNN-Swin Transformer Network的LPI雷达信号识别 被引量:1
8
作者 苏琮智 杨承志 +2 位作者 邴雨晨 吴宏超 邓力洪 《现代雷达》 CSCD 北大核心 2024年第3期59-65,共7页
针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transforme... 针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transformer网络(CSTN),然后利用时频分析获取雷达信号的时频特征,对图像进行预处理后输入CSTN模型进行训练,由网络的底部到顶部不断提取图像更丰富的语义信息,最后通过Softmax分类器对六类不同调制方式信号进行分类识别。仿真实验表明:在SNR为-18 dB时,该方法对六类典型雷达信号的平均识别率达到了94.26%,证明了所提方法的可行性。 展开更多
关键词 低截获概率雷达 信号调制方式识别 Swin Transformer网络 卷积神经网络 时频分析
在线阅读 下载PDF
基于CEEMDAN和TCN的变压器油中溶解气体含量预测 被引量:5
9
作者 张文乾 刘金凤 +2 位作者 江军 赵旭峰 范利东 《电力工程技术》 北大核心 2024年第3期192-200,233,共10页
准确预测油中溶解气体含量的变化趋势,对变压器的状态评价和寿命评估有着积极的作用。为了提高油中溶解气体预测的准确性,文中提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adapti... 准确预测油中溶解气体含量的变化趋势,对变压器的状态评价和寿命评估有着积极的作用。为了提高油中溶解气体预测的准确性,文中提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和时间卷积网络(time convolution network,TCN)的油中溶解气体预测方法。首先,通过CEEMDAN方法将油中溶解气体含量的原始序列分解为多个本征模态分量,并将其中的稳定分量与非稳定分量分离;其次,对本征模态分量分别建立TCN并预测未来趋势变化;最后,叠加TCN对各个本征模态分量的预测结果,重构得到原始序列的预测结果。实例分析表明,该预测方法的均方根误差、平均绝对误差、最大误差分别为1.01μL/L、1.53μL/L、5.54μL/L,相较于未采用CEEMDAN算法时分别减小了53.47%、41.18%、13.36%;在使用CEEMDAN的情况下,对比常用的递归神经网络,3种误差均最小。且对比现有油中溶解气体预测方法,文中提出的油中溶解气体预测方法具有更高的预测精度,可以为制定状态检修策略提供更有效的支撑。 展开更多
关键词 油中溶解气体 变压器 自适应噪声完备集合经验模态分解(CEEMDAN) 时间卷积网络(tcn) 时间序列预测 状态检修
在线阅读 下载PDF
基于多尺度LDTW和TCN的空间负荷预测方法 被引量:1
10
作者 马越 温蜜 《计算机工程》 CAS CSCD 北大核心 2024年第3期106-113,共8页
空间负荷预测为合理建设和使用变电站、馈线等提供了重要的指导,成为配电网规划中不可或缺的一部分。配电网规划的精细化产生了大量高分辨率的负荷数据,社会的快速发展使得地块的用电特征日趋复杂。当前的空间负荷预测没有充分考虑负荷... 空间负荷预测为合理建设和使用变电站、馈线等提供了重要的指导,成为配电网规划中不可或缺的一部分。配电网规划的精细化产生了大量高分辨率的负荷数据,社会的快速发展使得地块的用电特征日趋复杂。当前的空间负荷预测没有充分考虑负荷数据之间的时间特性,且在预测过程中也未考虑到不同类型地块间可能存在的负荷峰值出现时间不一致问题。为此,提出一种空间负荷预测方法,通过基于多尺度限制对齐路径长度(LDTW)的谱聚类分析用户的负荷曲线在形状上的相似性,并提取不同地块的典型用电行为,以进一步分类确定同类型地块对应的同时率。多尺度LDTW通过限制序列之间匹配步长的上限来抑制病态匹配的产生,提高曲线相似性的综合评估能力。根据聚类结果筛选适合待预测区域的训练样本并构建基于时间卷积网络(TCN)的回归预测模型,将预测结果基于地块各自的同时率进行聚合,实现空间负荷预测。实验结果表明:该方法加强了对负荷曲线形状的分析和对不同类型地块同时率的区分,在聚类方面,DBI指数达到0.57,VI指数达到0.31;在预测方面,相对误差达到1.93%,决定系数达到0.941,相比其他典型方法均取得了较大改善。 展开更多
关键词 空间负荷预测 动态时间规整 谱聚类 同时率 时间卷积网络
在线阅读 下载PDF
基于TCN和高斯过程残差建模学习的净负荷概率预测方法 被引量:1
11
作者 赵洪山 吴雨晨 +1 位作者 潘思潮 温开云 《太阳能学报》 CSCD 北大核心 2024年第12期588-595,共8页
提出一种基于时间卷积神经网络(TCN)和高斯过程(GP)的净负荷预测方法,可提供精确的点预测和概率预测结果。首先,TCN被用来提取大量的历史数据中净负荷的变化规律,TCN优秀的时间序列建模能力可发现净负荷预测任务输入输出之间的复杂映射... 提出一种基于时间卷积神经网络(TCN)和高斯过程(GP)的净负荷预测方法,可提供精确的点预测和概率预测结果。首先,TCN被用来提取大量的历史数据中净负荷的变化规律,TCN优秀的时间序列建模能力可发现净负荷预测任务输入输出之间的复杂映射关系。然后,为高斯过程设计一个复合核函数对TCN的预测残差进行建模学习,该过程可在TCN预测的基础上进一步提升点预测的精度,同时也可利用高斯过程的不确定性量化能力对净负荷预测的不确定性进行量化。最后,通过在真实净负荷数据集上和大量先进的模型进行比较,验证该文提出方法的有效性。 展开更多
关键词 预测模型 光伏出力 概率密度函数 残差神经网络 时间卷积神经网络
在线阅读 下载PDF
基于TimeGAN增强的CNN-LSTM模型在盾构掘进地表沉降中的预测研究
12
作者 郁万浩 刘陕南 肖晓春 《隧道建设(中英文)》 CSCD 北大核心 2024年第11期2223-2232,共10页
为更准确地预测小数据量下盾构法施工造成的地表沉降,提出基于TimeGAN(time series generative adversarial networks,时间序列生成对抗网络)增强的CNN(convolutional neural networks,卷积神经网络)-LSTM(long short-term memory,长短... 为更准确地预测小数据量下盾构法施工造成的地表沉降,提出基于TimeGAN(time series generative adversarial networks,时间序列生成对抗网络)增强的CNN(convolutional neural networks,卷积神经网络)-LSTM(long short-term memory,长短期记忆网络)盾构掘进地表沉降预测模型,并依托上海北横通道新建工程Ⅱ标盾构施工项目验证该增强模型的性能。首先,选取300环的部分施工参数、地质参数、几何参数以及地表最大沉降,对比LSTM、CNN-LSTM与TimeGAN-CNN-LSTM的性能,证明CNN-LSTM对于盾构施工环境下多参数的预测效果明显优于LSTM,TimeGAN-CNN-LSTM增强模型优于CNN-LSTM;然后,通过更改训练集及测试集的大小,对不同数据集下TimeGAN-CNN-LSTM增强模型相较CNN-LSTM的预测效果进行研究。结果表明:TimeGAN-CNN-LSTM增强模型预测效果相较CNN-LSTM模型提升显著,且当训练集与测试集比值为4~8时,提升最为显著。 展开更多
关键词 盾构隧道 地表沉降 卷积神经网络 长短期记忆网络 时间序列生成对抗网络
在线阅读 下载PDF
Multi-dimension and multi-modal rolling mill vibration prediction model based on multi-level network fusion
13
作者 CHEN Shu-zong LIU Yun-xiao +3 位作者 WANG Yun-long QIAN Cheng HUA Chang-chun SUN Jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3329-3348,共20页
Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode... Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration. 展开更多
关键词 rolling mill vibration multi-dimension data multi-modal data convolutional neural network time series prediction
在线阅读 下载PDF
Intelligent recognition and information extraction of radar complex jamming based on time-frequency features
14
作者 PENG Ruihui WU Xingrui +3 位作者 WANG Guohong SUN Dianxing YANG Zhong LI Hongwen 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1148-1166,共19页
In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise p... In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results. 展开更多
关键词 complex jamming recognition time frequency feature convolutional neural network(CNN) parameter estimation
在线阅读 下载PDF
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法 被引量:2
15
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
基于Bi-LSTM和改进残差学习的风电功率超短期预测方法 被引量:2
16
作者 王进峰 吴盛威 +1 位作者 花广如 吴自高 《华北电力大学学报(自然科学版)》 北大核心 2025年第1期56-65,共10页
现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆... 现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆(Bi-LSTM)和改进残差学习的风电功率预测方法。方法由两个部分组成,第一部分是以Bi-LSTM为主的多残差块上,结合稠密残差块网络(DenseNet)与多级残差网络(MRN)的残差连接方式,并且在残差连接上使用一维卷积神经网络(1D CNN)来提取风电功率值中时序的非线性特征部分。第二部分是Bi-LSTM与全连接层(Dense)组成的解码器,将多残差块提取到的功率值时序非线性特征映射为预测结果。方法在实际运行的风电功率数据上进行实验,并与常见的残差网络方法和时间序列预测方法进行对比。方法相比于其他模型方法有着更高的预测精度以及更好的泛化能力。 展开更多
关键词 深度学习 残差网络 风电功率预测 双向长短时记忆 一维卷积神经网络
在线阅读 下载PDF
基于CNN模型的地震数据噪声压制性能对比研究 被引量:1
17
作者 张光德 张怀榜 +3 位作者 赵金泉 尤加春 魏俊廷 杨德宽 《石油物探》 北大核心 2025年第2期232-246,共15页
地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信... 地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信息损失以及依赖人工提取特征等局限性。为克服传统方法的不足,采用时频域变换并结合深度学习方法进行地震噪声压制,并验证其应用效果。通过构建5个神经网络模型(FCN、Unet、CBDNet、SwinUnet以及TransUnet)对经过时频变换的地震信号进行噪声压制。为了定量评估实验方法的去噪性能,引入了峰值信噪比(PSNR)、结构相似性指数(SSIM)和均方根误差(RMSE)3个指标,比较不同方法的噪声压制性能。数值实验结果表明,基于时频变换的卷积神经网络(CNN)方法对常见的地震噪声类型(包括随机噪声、海洋涌浪噪声、陆地面波噪声)具有较好的噪声压制效果,能够提高地震数据的信噪比。而Transformer模块的引入可进一步提高对上述3种常见地震数据噪声类型的压制效果,进一步提升CNN模型的去噪性能。尽管该方法在数值实验中取得了较好的应用效果,但仍有进一步优化的空间可供探索,比如改进网络结构以适应更复杂的地震信号,并探索与其他先进技术结合,以提升地震噪声压制性能。 展开更多
关键词 地震噪声压制 深度学习 卷积神经网络(CNN) 时频变换 TRANSFORMER
在线阅读 下载PDF
基于多维注意力机制的高速公路交通流量预测方法
18
作者 虞安军 励英迪 +5 位作者 杨哲懿 付崇宇 童蔚苹 余佳 刘云海 刘志远 《汽车安全与节能学报》 北大核心 2025年第3期463-469,共7页
为了实现精准的交通流量预测,提高高速公路智慧管理水平,该文构建了一种基于多维注意力机制的交通流量预测模型,并在樟吉高速公路真实交通数据集上开展对比实验,以验证模型的准确性及预测精度。模型基于图神经网络(GNN)和时间卷积网络(T... 为了实现精准的交通流量预测,提高高速公路智慧管理水平,该文构建了一种基于多维注意力机制的交通流量预测模型,并在樟吉高速公路真实交通数据集上开展对比实验,以验证模型的准确性及预测精度。模型基于图神经网络(GNN)和时间卷积网络(TCN)提取交通流空间和时间维度的特征,结合多维注意力机制挖掘时空数据中的关键信息,同时引入多任务学习架构,通过基于同方差不确定性的损失函数来平衡不同任务共同学习,以提高模型的泛化能力和鲁棒性。结果表明:该模型在测试集上的均方根误差(RMSE)和平均绝对误差(MAE)分别为7.467和5.133,相较基准模型有更好的预测精度;提出的该交通流量预测方法可有效地挖掘交通流的时空特性,描述真实交通运行状态,对高速公路交通流量做出精准预测。 展开更多
关键词 交通流预测 图神经网络(GNN) 时间卷积网络(tcn) 多维注意力机制
在线阅读 下载PDF
基于COA-CNN的滚动轴承故障诊断方法研究
19
作者 别锋锋 周兆龙 +3 位作者 李倩倩 丁学平 袁为栋 张瀚阳 《噪声与振动控制》 北大核心 2025年第4期136-142,共7页
滚动轴承大多处于高速、高负载的复杂工况,通常存在较强的非平稳非线性特征,使得对其振动信号分析、故障识别困难。对此,提出一种基于浣熊算法(Coati Optimization Algorithm,COA)优化卷积神经网络(Convolutional Neural Network,CNN)... 滚动轴承大多处于高速、高负载的复杂工况,通常存在较强的非平稳非线性特征,使得对其振动信号分析、故障识别困难。对此,提出一种基于浣熊算法(Coati Optimization Algorithm,COA)优化卷积神经网络(Convolutional Neural Network,CNN)的故障诊断方法。首先利用差分连续小波变换(Difference Continuous Wavelet Transform,DCWT)对原始振动信号进行预处理,获取包含完整原始特征信息的小波时频图,通过构建COA-CNN模型优化神经网络的核心参数,对所获取的时频特征信息进行识别,由此完成滚动轴承的非平稳信息的提取和模式识别。实验仿真和工程应用研究表明,在复杂工况下该方法可以有效实现滚动轴承典型故障模式的识别。 展开更多
关键词 故障诊断 滚动轴承 卷积神经网络 小波变换 时频图 模式识别
在线阅读 下载PDF
基于改进时域卷积网络与多头自注意力机制的间歇过程质量预测模型
20
作者 赵小强 柳勇勇 +1 位作者 惠永永 刘凯 《计算机应用》 北大核心 2025年第7期2245-2252,共8页
为提高时域卷积网络(TCN)在批量大小变化时的训练稳定性,并解决间歇过程质量预测在捕捉长期依赖性和全局关联性上存在不足而导致的预测准确度不高的问题,提出一种基于批量组规范化(BGN)和Mish激活函数改进残差结构的TCN(BMTCN)与多头自... 为提高时域卷积网络(TCN)在批量大小变化时的训练稳定性,并解决间歇过程质量预测在捕捉长期依赖性和全局关联性上存在不足而导致的预测准确度不高的问题,提出一种基于批量组规范化(BGN)和Mish激活函数改进残差结构的TCN(BMTCN)与多头自注意力机制(MHSA)的间歇过程质量预测模型(BMTCN-MHSA)。首先,将间歇过程的三维数据展开为二维矩阵形式,并对数据进行归一化处理,再引入奇异谱分析法(SSA)分解重构数据;其次,在时域卷积的残差部分融入BGN以降低网络模型在批量大小变化时的敏感度,引入Mish激活函数以提高模型的泛化能力,并利用多头自注意力机制对序列中不同位置的特征信息进行关联和权重分配,从而进一步提取序列中的关键特征信息和相互依赖关系,进而更好地捕捉间歇过程的动态特征;最后,使用青霉素仿真实验数据进行实验验证。实验结果表明,相较于TCN模型,BMTCN-MHSA模型的平均绝对误差(MAE)降低了56.86%,均方误差(MSE)降低了48.80%,而决定系数(R2)达到了99.48%,这表明BMTCN-MHSA模型提高了间歇过程质量预测的准确性。 展开更多
关键词 间歇过程 质量预测 奇异谱分析法 时域卷积网络 多头自注意力机制
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部