Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide(CTAB)-modified Watt's nickel bath with Fe2O3 particles dispersed in it.The effects of the plating parameters on the chemica...Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide(CTAB)-modified Watt's nickel bath with Fe2O3 particles dispersed in it.The effects of the plating parameters on the chemical composition,structural and morphological characteristics of the electrodeposited Ni-Co-Fe2O3 composite coatings were investigated by energy dispersive X-ray(EDS) spectroscopy,X-ray diffractometry(XRD) and scanning electron microscopy(SEM).The results reveal that Fe2O3 particles can be codeposited in the Ni-Co matrix.The codeposition of Fe2O3 particles with Ni-Co is favoured at high Fe2O3 particle concentration and medium stirring,and the deposition of Co is favoured at high concentration of CTAB.Moreover,the study of the textural perfection of the deposits reveals that the presence of particles leads to the worsening of the quality of the observed <220> preferred orientation.Composites with high concentration of embedded particles exhibit a preferred crystal orientation of <111>.The more the embedded Fe2O3 particles in the metallic matrix,the smaller the sizes of the crystallite for the composite deposits.展开更多
Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room t...Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room temperature brittleness induces shape difficult and limits its industrial application. The Fe-Al intermetallic coatings were prepared by high velocity arc spraying technology with cored wire on 20G steel, which will not only obviate the problems faced in fabrication of these alloys into useful shapes, but also allow the effective use of their outstanding high-temperature performance. The Fe-Al/WC intermetallic composite coatings were prepared by high velocity arc spraying technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings was studied by means of thermogrativmetic analyzer at 450, 650 and 800℃. The results demonstrate that the kinetics curve of oxidation at three temperatures approximately follows the logarithmic law. The composition of the oxidized coating is mainly composed of Al2O3, Fe2O3, Fe3O4 and FeO. These phases distribute unevenly. The protective Al2O3 film firstly forms and preserves the coatings from further oxidation.展开更多
Pressureless melt infiltration is an economic route f or preparation of high-density ceramic/melt composites. In this study, the Fe40 Al iron aluminide intermetallic, a low cost material of excellent oxidation and cor...Pressureless melt infiltration is an economic route f or preparation of high-density ceramic/melt composites. In this study, the Fe40 Al iron aluminide intermetallic, a low cost material of excellent oxidation and corrosion resistance, was used as binder for fabricating Fe40Al/TiC composites b y pressureless melt infiltration. The wetting ability of liquid Fe40Al in porous TiC pre-form was studied by in-situ monitoring the melting and infiltration p rocess. The infiltration ability was investigated by observing the distance of l iquid Fe40Al intrusion in porous TiC pre-forms at different infiltration temper atures and times by using optical microscope. Porous TiC per-forms with density of 60%~88%TD (theoretical density), prepared under pre-defined sintering temp e rature cycles, were used for fabricating Fe40Al/TiC composites in the range of 1 2%~40% metal content by volume. Almost full dense Fe40Al/TiC composites were su c cessfully fabricated by this technique. Liquid Fe40Al exhibited excellent infilt ration ability, the distance of complete intrusion of liquid Fe40Al in the TiC s intered pre-form with density of 88%TD was over 7 mm after 5 min at the inf iltration temperature of 1 450 ℃. Microstructural observation by SEM and TEM also showed that liquid Fe40Al filled the very narrow gaps among TiC particles, the interfaces of TiC particles and F e40Al plastic ligaments being metallurgical bonded. TEM revealed that high densi ty of dislocations formed in Fe40Al ligaments during solidification, which favor the mechanical properties. Ti decomposed from TiC particles and dissolved into Fe40Al during infiltration. According to the compositional analysis of TEM-EDS, the concentration of Ti in Fe40Al ranges at 1at%~4at% depending on composite f a bricating conditions and the distance from the measuring point to the closest Ti C particles. XRD analysis indicated that the composites were composed of two pha ses, the original TiC and Fe 0.4Al 0.6 intermetallic. No new phase formed during infiltration, but the lattice parameter of Fe 0.4Al 0.6 was expended due to the Ti in the solid solution.展开更多
Nanostructured FeS-SiC coating was deposited by atmospheric plasma spraying(APS).The microstructure and phase composition of the coating were characterized with SEM and XRD,respectively.In addition,the size distribu...Nanostructured FeS-SiC coating was deposited by atmospheric plasma spraying(APS).The microstructure and phase composition of the coating were characterized with SEM and XRD,respectively.In addition,the size distribution of the reconstituted powders and the porosity of the coating have been measured.It was found that the reconstitiuted powers with sizes in the range of 20 to 80 μm had excellent flowability and were suitable for plasma spraying process.The as-sprayed FeS-SiC composite coating exhibited a bimodal distribution with small grains(30~80nm) and large grains(100~200nm).The coating was mainly composed of FeS and SiC,a small quantity of Fe1-xS and oxide were also found.The porosity of the coating was approximately 19%.展开更多
采用粉末冶金技术设计制备了质量分数4%TiC强化的FeCrB基抗磨复合材料,与GCr15钢球配副进行往复式干摩擦实验,系统研究滑动速度和载荷对复合材料的干摩擦磨损性能的影响。使用X射线衍射(X-Ray Diffraction,XRD)、扫描电子显微镜(Scannin...采用粉末冶金技术设计制备了质量分数4%TiC强化的FeCrB基抗磨复合材料,与GCr15钢球配副进行往复式干摩擦实验,系统研究滑动速度和载荷对复合材料的干摩擦磨损性能的影响。使用X射线衍射(X-Ray Diffraction,XRD)、扫描电子显微镜(Scanning Electron Microscope,SEM)等技术分析了复合材料的物相成分和微观形貌。实验结果表明:复合材料物相为α-Fe、FeCr、TiC、Cr_(2)B和Fe_(2)B相。TiC的加入显著提高了材料的硬度,密度略有下降。随着滑动速度和载荷的增大,摩擦因数总体下降而磨损率显著增加。TiC对铁基体的钉扎作用抑制了材料的剥落和变形,材料的抗磨性能显著提高。综合分析,TiC能有效提升FeCrB合金的干摩擦学性能,其磨损机制主要是剥层磨损和磨粒磨损。展开更多
以TiFe粉和碳的前驱体(石油沥青)为原料,通过碳化制备Ti Fe C系反应喷涂复合粉末,并通过普通火焰喷涂技术成功制备了TiC/Fe金属陶瓷复合涂层;采用XRD、SEM和EDS对喷涂粉末和涂层的成分、组织结构进行了分析,同时对涂层耐磨性能进行了对...以TiFe粉和碳的前驱体(石油沥青)为原料,通过碳化制备Ti Fe C系反应喷涂复合粉末,并通过普通火焰喷涂技术成功制备了TiC/Fe金属陶瓷复合涂层;采用XRD、SEM和EDS对喷涂粉末和涂层的成分、组织结构进行了分析,同时对涂层耐磨性能进行了对比研究。结果表明:采用前驱体碳化复合技术制备的Ti Fe C系复合喷涂粉末粒度均匀、无有害相生成;喷涂所得到的TiC/Fe金属陶瓷复合涂层由片状的铁基体和弥散分布的TiC颗粒组成;TiC颗粒大致呈球形,粒度一般在0.5μm以下;相同条件下所获涂层的磨损体积大约是常规火焰喷涂Ni60涂层的1/5。展开更多
基金Project(2005CB623703) supported by the National Key Basic Research Program of ChinaProject(50474051) supported by the National Natural Science Foundation of China+2 种基金Project(CX2009B032) supported by Innovation Foundation for Postgraduate of Hunan Province of China Project(ZKJ2009024) supported by the Precious Apparatus Open Share Foundation of Central South University, ChinaProject(2009ybfz02) supported by Excellent Doctor Support Fund of Central South University,China
文摘Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide(CTAB)-modified Watt's nickel bath with Fe2O3 particles dispersed in it.The effects of the plating parameters on the chemical composition,structural and morphological characteristics of the electrodeposited Ni-Co-Fe2O3 composite coatings were investigated by energy dispersive X-ray(EDS) spectroscopy,X-ray diffractometry(XRD) and scanning electron microscopy(SEM).The results reveal that Fe2O3 particles can be codeposited in the Ni-Co matrix.The codeposition of Fe2O3 particles with Ni-Co is favoured at high Fe2O3 particle concentration and medium stirring,and the deposition of Co is favoured at high concentration of CTAB.Moreover,the study of the textural perfection of the deposits reveals that the presence of particles leads to the worsening of the quality of the observed <220> preferred orientation.Composites with high concentration of embedded particles exhibit a preferred crystal orientation of <111>.The more the embedded Fe2O3 particles in the metallic matrix,the smaller the sizes of the crystallite for the composite deposits.
文摘Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room temperature brittleness induces shape difficult and limits its industrial application. The Fe-Al intermetallic coatings were prepared by high velocity arc spraying technology with cored wire on 20G steel, which will not only obviate the problems faced in fabrication of these alloys into useful shapes, but also allow the effective use of their outstanding high-temperature performance. The Fe-Al/WC intermetallic composite coatings were prepared by high velocity arc spraying technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings was studied by means of thermogrativmetic analyzer at 450, 650 and 800℃. The results demonstrate that the kinetics curve of oxidation at three temperatures approximately follows the logarithmic law. The composition of the oxidized coating is mainly composed of Al2O3, Fe2O3, Fe3O4 and FeO. These phases distribute unevenly. The protective Al2O3 film firstly forms and preserves the coatings from further oxidation.
文摘Pressureless melt infiltration is an economic route f or preparation of high-density ceramic/melt composites. In this study, the Fe40 Al iron aluminide intermetallic, a low cost material of excellent oxidation and corrosion resistance, was used as binder for fabricating Fe40Al/TiC composites b y pressureless melt infiltration. The wetting ability of liquid Fe40Al in porous TiC pre-form was studied by in-situ monitoring the melting and infiltration p rocess. The infiltration ability was investigated by observing the distance of l iquid Fe40Al intrusion in porous TiC pre-forms at different infiltration temper atures and times by using optical microscope. Porous TiC per-forms with density of 60%~88%TD (theoretical density), prepared under pre-defined sintering temp e rature cycles, were used for fabricating Fe40Al/TiC composites in the range of 1 2%~40% metal content by volume. Almost full dense Fe40Al/TiC composites were su c cessfully fabricated by this technique. Liquid Fe40Al exhibited excellent infilt ration ability, the distance of complete intrusion of liquid Fe40Al in the TiC s intered pre-form with density of 88%TD was over 7 mm after 5 min at the inf iltration temperature of 1 450 ℃. Microstructural observation by SEM and TEM also showed that liquid Fe40Al filled the very narrow gaps among TiC particles, the interfaces of TiC particles and F e40Al plastic ligaments being metallurgical bonded. TEM revealed that high densi ty of dislocations formed in Fe40Al ligaments during solidification, which favor the mechanical properties. Ti decomposed from TiC particles and dissolved into Fe40Al during infiltration. According to the compositional analysis of TEM-EDS, the concentration of Ti in Fe40Al ranges at 1at%~4at% depending on composite f a bricating conditions and the distance from the measuring point to the closest Ti C particles. XRD analysis indicated that the composites were composed of two pha ses, the original TiC and Fe 0.4Al 0.6 intermetallic. No new phase formed during infiltration, but the lattice parameter of Fe 0.4Al 0.6 was expended due to the Ti in the solid solution.
基金The authors would like to thank National Natural Science Foundation of China (No. 50375015) for supporting.
文摘Nanostructured FeS-SiC coating was deposited by atmospheric plasma spraying(APS).The microstructure and phase composition of the coating were characterized with SEM and XRD,respectively.In addition,the size distribution of the reconstituted powders and the porosity of the coating have been measured.It was found that the reconstitiuted powers with sizes in the range of 20 to 80 μm had excellent flowability and were suitable for plasma spraying process.The as-sprayed FeS-SiC composite coating exhibited a bimodal distribution with small grains(30~80nm) and large grains(100~200nm).The coating was mainly composed of FeS and SiC,a small quantity of Fe1-xS and oxide were also found.The porosity of the coating was approximately 19%.
文摘采用粉末冶金技术设计制备了质量分数4%TiC强化的FeCrB基抗磨复合材料,与GCr15钢球配副进行往复式干摩擦实验,系统研究滑动速度和载荷对复合材料的干摩擦磨损性能的影响。使用X射线衍射(X-Ray Diffraction,XRD)、扫描电子显微镜(Scanning Electron Microscope,SEM)等技术分析了复合材料的物相成分和微观形貌。实验结果表明:复合材料物相为α-Fe、FeCr、TiC、Cr_(2)B和Fe_(2)B相。TiC的加入显著提高了材料的硬度,密度略有下降。随着滑动速度和载荷的增大,摩擦因数总体下降而磨损率显著增加。TiC对铁基体的钉扎作用抑制了材料的剥落和变形,材料的抗磨性能显著提高。综合分析,TiC能有效提升FeCrB合金的干摩擦学性能,其磨损机制主要是剥层磨损和磨粒磨损。
文摘以TiFe粉和碳的前驱体(石油沥青)为原料,通过碳化制备Ti Fe C系反应喷涂复合粉末,并通过普通火焰喷涂技术成功制备了TiC/Fe金属陶瓷复合涂层;采用XRD、SEM和EDS对喷涂粉末和涂层的成分、组织结构进行了分析,同时对涂层耐磨性能进行了对比研究。结果表明:采用前驱体碳化复合技术制备的Ti Fe C系复合喷涂粉末粒度均匀、无有害相生成;喷涂所得到的TiC/Fe金属陶瓷复合涂层由片状的铁基体和弥散分布的TiC颗粒组成;TiC颗粒大致呈球形,粒度一般在0.5μm以下;相同条件下所获涂层的磨损体积大约是常规火焰喷涂Ni60涂层的1/5。