A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is oppo...A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is opposite to that of naive 1-fold cross validation. As opposed to naive l-fold cross validation, fast l-fold cross validation takes the advantage in terms of computational time, especially for the large fold number such as l 〉 20. To corroborate the efficacy and feasibility of fast l-fold cross validation, experiments on five benchmark regression data sets are evaluated.展开更多
Cross iteration often exists in the computational process of the simulation models, especially for control models. There is a credibility defect tracing problem in the validation of models with cross iteration. In ord...Cross iteration often exists in the computational process of the simulation models, especially for control models. There is a credibility defect tracing problem in the validation of models with cross iteration. In order to resolve this problem, after the problem formulation, a validation theorem on the cross iteration is proposed, and the proof of the theorem is given under the cross iteration circumstance. Meanwhile, applying the proposed theorem, the credibility calculation algorithm is provided, and the solvent of the defect tracing is explained. Further, based on the validation theorem on the cross iteration, a validation method for simulation models with the cross iteration is proposed, which is illustrated by a flowchart step by step. Finally, a validation example of a sixdegree of freedom (DOF) flight vehicle model is provided, and the validation process is performed by using the validation method. The result analysis shows that the method is effective to obtain the credibility of the model and accomplish the defect tracing of the validation.展开更多
传统CNN算法在花生荚果外观识别任务中存在内存密集型和计算密集型问题,以及其在资源受限的边缘终端上部署困难,基于此,该研究提出了一种高效的花生荚果识别模型——PPINET(peanut pod identification network),以适应嵌入式设备的资源...传统CNN算法在花生荚果外观识别任务中存在内存密集型和计算密集型问题,以及其在资源受限的边缘终端上部署困难,基于此,该研究提出了一种高效的花生荚果识别模型——PPINET(peanut pod identification network),以适应嵌入式设备的资源限制需求。该模型通过结合深度可分离卷积和倒残差结构显著降低参数量和计算量,同时保留特征提取能力,并引入MQA(multi-query attention)模块增强关键特征提取,并利用TuNAS(easy-to-tune and scalable implementation of efficient neural architecture search with weight sharing)策略优化模型结构,使其在资源受限设备上表现优异。此外,采用ResNet(residual neural network)进行知识蒸馏配合三折交叉验证训练提升精度,最终量化为RKNN格式并在瑞芯微RK3588上实现NPU加速部署。PPINET模型尺寸仅为1.85 MB,参数量为0.49 M,浮点运算数为0.30G。PPINET在花生荚果分类中表现优异,准确率达98.65%,在RK3588上推理速度达321 fps。该模型具备较高的识别准确率和快速的识别速度,能够实现花生荚果的实时精准检测。展开更多
基金supported by the National Natural Science Foundation of China(51006052)the NUST Outstanding Scholar Supporting Program
文摘A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is opposite to that of naive 1-fold cross validation. As opposed to naive l-fold cross validation, fast l-fold cross validation takes the advantage in terms of computational time, especially for the large fold number such as l 〉 20. To corroborate the efficacy and feasibility of fast l-fold cross validation, experiments on five benchmark regression data sets are evaluated.
基金supported by the National Natural Science Foundation of China(61374164)
文摘Cross iteration often exists in the computational process of the simulation models, especially for control models. There is a credibility defect tracing problem in the validation of models with cross iteration. In order to resolve this problem, after the problem formulation, a validation theorem on the cross iteration is proposed, and the proof of the theorem is given under the cross iteration circumstance. Meanwhile, applying the proposed theorem, the credibility calculation algorithm is provided, and the solvent of the defect tracing is explained. Further, based on the validation theorem on the cross iteration, a validation method for simulation models with the cross iteration is proposed, which is illustrated by a flowchart step by step. Finally, a validation example of a sixdegree of freedom (DOF) flight vehicle model is provided, and the validation process is performed by using the validation method. The result analysis shows that the method is effective to obtain the credibility of the model and accomplish the defect tracing of the validation.