期刊文献+

基于Cross-Validation的小波自适应去噪方法 被引量:5

Adaptive Wavelet Denoising Based on Cross-Validation
在线阅读 下载PDF
导出
摘要 小波去噪算法中,阈值的选择非常关键.提出一种自适应阈值选择算法.该算法先通过Cross-Validation方法将噪声干扰信号分成两个子信号,一个用于阈值处理,一个用作参考信号;再采用最深梯度法来寻求一个最优去噪阈值.仿真和实验结果表明:在均方误差意义上,所提算法去噪效果优于Donoho等提出的VisuShrink和SureShrink两种去噪算法,且不需要带噪信号的任何'先验信息',适应于实际信号去噪处理. A new wavelet-based adaptive denoising algorithm was presented. By using a modified twofold cross-validation, a noise-corrupted signal was divided into two parts: one for estimating, and the other as a reference signal, and they made it possible to search for optimal thresholds by using gradient-based adaptive algo- rithms. The numerical results indicate that the proposed method outperforms the standard wavelet thresholding denoising methods, like Donoho' s VisuShrink and SureShrink, in MSE sense. The proposed algorithm does not need any prior information of the noise-distorted signal, and its convergence speed is faster. So it is fit for realtime signal processing.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第11期40-43,共4页 Journal of Hunan University:Natural Sciences
基金 湖南省自然科学基金资助项目(05JJ40001) 长沙市科研基金资助项目(K051150-72)
关键词 小波变换 Cross-Validation 自适应滤波 阈值 wavelet transform cross-validation adaptive algorithm thresholding
作者简介 黄文清(1968-),男,湖南涟源人,湖南大学博士 通讯联系人,E-mail:ihuangwenqing@163.com
  • 相关文献

参考文献9

  • 1DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometric, 1994,81:425 - 455.
  • 2DONOHO D L, JOHNSTONE I M. Adaptation to unknown smoothness via wavelet shrinkage [ J ]. J Amer Statist Aspic, 1995,90 : 1200 - 1224.
  • 3DONOHO D L. De-noising by soft-thresholding[J ]. IEEE Trans Inform Theory, 1995,41:613 - 627.
  • 4ZHANG X P, DESAI M D. Adaptive denoising based on SURE risk [J]. IEEE Signal Processing Letters, 1998,5: 265- 267.
  • 5潘泉,戴冠中,张洪才,张磊.基于阈值决策的子波域去噪方法[J].电子学报,1998,26(1):115-117. 被引量:59
  • 6曲天书,戴逸松,王树勋.基于SURE无偏估计的自适应小波阈值去噪[J].电子学报,2002,30(2):266-268. 被引量:67
  • 7张吉先,钟秋海,戴亚平.小波门限消噪法应用中分解层数及阈值的确定[J].中国电机工程学报,2004,24(2):118-122. 被引量:114
  • 8MALLAT S . A theory for multiresolution signal decomposition: the wavelet representation[J] : IEEE Trans Pattern Anal Machine Intell, 1989, 11:674 - 693.
  • 9NASON G P. Wavelet regression by cross-validation[J ]. J Royal Statist Society 1996, 58:463 - 479.

二级参考文献10

共引文献227

同被引文献53

引证文献5

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部