摘要
小波去噪算法中,阈值的选择非常关键.提出一种自适应阈值选择算法.该算法先通过Cross-Validation方法将噪声干扰信号分成两个子信号,一个用于阈值处理,一个用作参考信号;再采用最深梯度法来寻求一个最优去噪阈值.仿真和实验结果表明:在均方误差意义上,所提算法去噪效果优于Donoho等提出的VisuShrink和SureShrink两种去噪算法,且不需要带噪信号的任何'先验信息',适应于实际信号去噪处理.
A new wavelet-based adaptive denoising algorithm was presented. By using a modified twofold cross-validation, a noise-corrupted signal was divided into two parts: one for estimating, and the other as a reference signal, and they made it possible to search for optimal thresholds by using gradient-based adaptive algo- rithms. The numerical results indicate that the proposed method outperforms the standard wavelet thresholding denoising methods, like Donoho' s VisuShrink and SureShrink, in MSE sense. The proposed algorithm does not need any prior information of the noise-distorted signal, and its convergence speed is faster. So it is fit for realtime signal processing.
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2008年第11期40-43,共4页
Journal of Hunan University:Natural Sciences
基金
湖南省自然科学基金资助项目(05JJ40001)
长沙市科研基金资助项目(K051150-72)
作者简介
黄文清(1968-),男,湖南涟源人,湖南大学博士 通讯联系人,E-mail:ihuangwenqing@163.com