We show that the torsion module Tor_(j)^(R)(R/a,H_(a)^(i)(X))is in a Serre subcategory for the bounded below R-complex X.In addition,we prove the isomorphism Tor_(s-t)^(R)(R/a,X)≅Tor_(s)^(R)(R/a,H_(a)^(t)(X))in some c...We show that the torsion module Tor_(j)^(R)(R/a,H_(a)^(i)(X))is in a Serre subcategory for the bounded below R-complex X.In addition,we prove the isomorphism Tor_(s-t)^(R)(R/a,X)≅Tor_(s)^(R)(R/a,H_(a)^(t)(X))in some case.As an application,the Betti number of a complex X in a prime ideal p can be computed by the Betti number of the local cohomology modules of X in p.展开更多
Recently,magnesium and its alloys have attracted more and more attention as promising implant materials due to their excellent properties such as good biocompatibility,biodegradation,non-toxicity and comparable mechan...Recently,magnesium and its alloys have attracted more and more attention as promising implant materials due to their excellent properties such as good biocompatibility,biodegradation,non-toxicity and comparable mechanical properties with natural bone.They can be gradually degraded and absorbed so as to avoid the second surgery for implants removal after the tissues are healed completely.In addition,they are also able to prevent the stress shielding effect in human body environment because of the density,elastic modulus and yield strength of magnesium closer to the bone.Unfortunately,the high corrosion rate which causes early mechanical failure of the implants in physiological environment limits the widespread use of magnesium alloys for clinical application in biology.And the high corrosion process usually causes huge hydrogen evolution and alkalinization,resulting in problems against the implants as well as the surrounding tissues.In order to enhance the corrosion resistance of magnesium alloys,in this study,the ZEK100 magnesium alloy was pre-deformed with a highpressure torsion(HPT)process and then fabricated hydroxyapatite(HA)coatings with different contents of Mg(OH)2 nanopowder via hydrothermal method.The specimens were characterized by scanning electron microscope(SEM)and X-ray diffraction(XRD).At the same time,prior and after the HPT procedure,the metallography,microhardness and tensile tests of specimens were characterized.Meanwhile,the corrosion behavior of the specimens was evaluated by electrochemical impedance spectroscopy(EIS)and hydrogen evolution tests.And the interface bonding strength of the HA coating on the magnesium alloy substrate was evaluated by a tape adhesion test/scratch test.Results showed that HPT processing refined the grain size and introduced a great number of twins,resulting in the enhancement of microhardness and Young’s modulus of ZEK100 magnesium alloy,but hardness values at the edge were higher than those at the center due to the uneven shear strain.At the same conditions,the HA coating on HPT-ZEK was denser,thicker than that on ZEK sample and the crystal sizes of HA were smaller on HPT-ZEK.These were attributed to fine,uniform distributed secondary phases and lots of fine grains,twins,grain boundaries in HPT-ZEK substrates which can provide more nucleation sites for the HA crystal.In terms of the amount of Mg(OH)2 nanopowder,Mg(OH)2 nanopowder significantly influenced the microstructure and thickness of the HA coating.And at a 0.3 mg/mL content of Mg(OH)2 nanopowder,there was the densest,thickest HA coating on magnesium alloys,and the crystal size of HA was minimum.Specifically,the HA coating thickness on ZEK-03(0.3 mg/mL Mg(OH)2 nanopowder)was 1.8 times of that on ZEK-00(0 mg/mL Mg(OH)2 nanopowder),while the HA coating thickness on HPT-03 was 2.6 times of that on ZEK-00.And the adhesion strength of HA coating on HPT-03 substrate was better than that on ZEK-03.In addition,HPT technology and surface modification by HA coating simultaneously increased the corrosion resistance of ZEK100 magnesium alloy and the corrosion of HPT-ZEK samples occurred in a more uniform manner,while it was pitting on the surface of ZEK100 magnesium alloy.Therefore,there was the best corrosion resistance on HPT-03 sample,which could promote the application of magnesium alloys in biomedical fields.展开更多
For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machi...For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machine tool spindle system with geared transmission.By using the elementary method and Runge-Kutta method in Matlab,the eigenvalue problem was solved and the pure torsional vibration responses were obtained and examined.The results show that the spindle system cannot operate in the desired constant rotating speed as far as the gravitational unbalance torque is engaged,so it may cause bad effect on machining accuracy.And the torsional vibration increases infinitely near the resonant frequencies,so the spindle system cannot operate normally during these spindle speed ranges.展开更多
The distribution of shear stress on the cross-section of plastic metal solid circular shaft under pure torsion yielding, the applicability of complete plastic model assumption and the shear stress formula were researc...The distribution of shear stress on the cross-section of plastic metal solid circular shaft under pure torsion yielding, the applicability of complete plastic model assumption and the shear stress formula were researched. Based on the shear stress formula of circular shaft under pure torsion in elastic stage, the formula of torque in elastic stage and the definition of yield, it is obtained that the yielding stage of plastic metal shaft under pure torsion is only a surface phenomenon of torque-torsion angle relationship, and the distribution of shear stress is essentially different from that of tensile stress when yielding under uniaxial tension. The pure torsion platform-torsion angle and the shape of torque-torsion angle curve cannot change the distribution of shear stress on the shaft cross-section. The distribution of shear stress is still linear with the maximum shear stress ts. The complete plasticity model assumption is not in accordance with the actual situation of shaft under torsion. The experimental strength data of nine plastic metals are consistent with the calculated results of the new limiting strain energy strength theory (LSEST). The traditional yield stress formula for plastic shaft under torsion is reasonable. The shear stress formula based on the plane assumption in material mechanics is applicable for all loaded stages of torsion shaft.展开更多
Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce th...Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce the torsional vibration of the hybrid construction machinery complex shafting, torsional vibration active control was proposed. The three-mass model of coaxial shafting of hybrid construction machinery was established. The PID control and the fuzzy sliding mode control were chosen to weaken torsional vibration by controlling the motor speed and torque. The simulation results show that the fuzzy sliding mode control has 12% overshoot of the PID control when the engine torque changes. The active control is effective and can realize smooth power switch.展开更多
A three-dimensional elasto-plastic finite element analysis of pre-twist process for a torsional axis made of 45GrNiMoVA steel, was carried out using a commercial finite element analysis code, MSC MARC 2001. The result...A three-dimensional elasto-plastic finite element analysis of pre-twist process for a torsional axis made of 45GrNiMoVA steel, was carried out using a commercial finite element analysis code, MSC MARC 2001. The results show that the critical pre-twist strain angle is 0.027 rad and the maximum elastic shear stress after pre-twist is 1694MPa for the torsional axis.展开更多
Objective To assess the relationship of myocardial strain and torsion and quantitative heart function scores in patients with coronary heart disease after PTCA.Methods A total of 90 patients with coronary artery disea...Objective To assess the relationship of myocardial strain and torsion and quantitative heart function scores in patients with coronary heart disease after PTCA.Methods A total of 90 patients with coronary artery disease after PTCA were randomly divided into clinically normal heart function group(group A,n=43)and abnormal heart function group(group B,n=47),and 30 healthy people matched with age and gender as the control group(group C,n=30).展开更多
Vibration isolation is an effective method to mitigate unwanted disturbances arising from dynamic loading conditions. With smart materials as suitable substitutes, the conventional passive isolators have attained attr...Vibration isolation is an effective method to mitigate unwanted disturbances arising from dynamic loading conditions. With smart materials as suitable substitutes, the conventional passive isolators have attained attributes of semi-active as well as the active control system. In the present study, the non-homogenous field-dependent isolation capabilities of the magnetorheological elastomer are explored under torsional vibrations. Torsional natural frequency was measured using the serial arrangement of accelerometers. Novel methods are introduced to evaluate the torsional stiffness variations of the isolator for a semi-definite and a motor-coupled rotor system. For the semi-definite system, the isolation effect was studied using the frequency response functions from the modal analysis. The speed-dependent variations for motor-coupled rotor system were assessed using the shift in frequency amplitudes from torque transducers. Finite element method magnetics was used to study the variations in the non-homogenous magnetic field across the elastomer. The response functions for the semi-definite rotor system reveal a shift in the frequency in the effect of the magnetic field. Speed-dependent variations in the frequency domain indicate an increment of 9% in the resonant frequency of the system.展开更多
High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate tor...High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate torsional vibration. This paper presents the construction of a highly compact HSLDS torsional vibration isolator by connecting positive and negative stiffness components in paral lel. Based on mechanical model analysis, the restoring torque of negative stiffness components is de rived from their springs and connecting rods, while that of positive stiffness components is obtained through their circular section flexible rods. The quasizero stiffness characteristics of the HSLDS iso lator are achieved through a combination of static structural simulation and experimental test. The tor sional vibration isolation performance is assessed by means of numerical simulation and theory analy sis. Finally, the frequency-sweep vibration test is conducted. The test results indicate that the HSLDS torsional vibration isolator exhibits superior low-frequency isolation performance compared to its linear counterpart, rendering it a promising solution for mitigating low-frequency torsional vi bration in ship shafting.展开更多
Stability analyses of perfect and imperfect cylindrical shells under axial compression and torsion were presented. Finite element method for the stability analysis of perfect cylindrical shells was put forward through...Stability analyses of perfect and imperfect cylindrical shells under axial compression and torsion were presented. Finite element method for the stability analysis of perfect cylindrical shells was put forward through comparing critical loads and the first buckling modes with those obtained through theoretical analysis. Two typical initial defects, non-circularity and uneven thickness distribution, were studied. Critical loads decline with the increase of non-circularity, which exist in imperfect cylindrical shells under both axial compression and torsion. Non-circularity defect has no effect on the first buckling mode when cylindrical shell is under torsion. Unfortunately, it has a completely different buckling mode when cylindrical shell is under axial compression. Critical loads decline with the increase of thickness defect amplitude, which exist in imperfect cylindrical shells under both axial compression and torsion, too. A greater wave number is conducive to the stability of cylindrical shells. The first buckling mode of imperfect cylindrical shells under torsion maintains its original shape, but it changes with wave number when the cylindrical shell is under axial compression.展开更多
基金Natural Science Foundation of Gansu Province(23JRRA866)Higher Education Innovation Fund of Gansu Provincial Department of Education(2025A-132)+1 种基金University-level Scientific Research and Innovation Project of Gansu University of Political Science and Law(GZF2024XQN16)Youth Foundation of Lanzhou Jiaotong University(2023023)。
文摘We show that the torsion module Tor_(j)^(R)(R/a,H_(a)^(i)(X))is in a Serre subcategory for the bounded below R-complex X.In addition,we prove the isomorphism Tor_(s-t)^(R)(R/a,X)≅Tor_(s)^(R)(R/a,H_(a)^(t)(X))in some case.As an application,the Betti number of a complex X in a prime ideal p can be computed by the Betti number of the local cohomology modules of X in p.
基金sponsored by the National Natural Science Foundation of China ( 51571150,11572222)Tianjin Natural Science Foundation ( 14JCYBJC16900)
文摘Recently,magnesium and its alloys have attracted more and more attention as promising implant materials due to their excellent properties such as good biocompatibility,biodegradation,non-toxicity and comparable mechanical properties with natural bone.They can be gradually degraded and absorbed so as to avoid the second surgery for implants removal after the tissues are healed completely.In addition,they are also able to prevent the stress shielding effect in human body environment because of the density,elastic modulus and yield strength of magnesium closer to the bone.Unfortunately,the high corrosion rate which causes early mechanical failure of the implants in physiological environment limits the widespread use of magnesium alloys for clinical application in biology.And the high corrosion process usually causes huge hydrogen evolution and alkalinization,resulting in problems against the implants as well as the surrounding tissues.In order to enhance the corrosion resistance of magnesium alloys,in this study,the ZEK100 magnesium alloy was pre-deformed with a highpressure torsion(HPT)process and then fabricated hydroxyapatite(HA)coatings with different contents of Mg(OH)2 nanopowder via hydrothermal method.The specimens were characterized by scanning electron microscope(SEM)and X-ray diffraction(XRD).At the same time,prior and after the HPT procedure,the metallography,microhardness and tensile tests of specimens were characterized.Meanwhile,the corrosion behavior of the specimens was evaluated by electrochemical impedance spectroscopy(EIS)and hydrogen evolution tests.And the interface bonding strength of the HA coating on the magnesium alloy substrate was evaluated by a tape adhesion test/scratch test.Results showed that HPT processing refined the grain size and introduced a great number of twins,resulting in the enhancement of microhardness and Young’s modulus of ZEK100 magnesium alloy,but hardness values at the edge were higher than those at the center due to the uneven shear strain.At the same conditions,the HA coating on HPT-ZEK was denser,thicker than that on ZEK sample and the crystal sizes of HA were smaller on HPT-ZEK.These were attributed to fine,uniform distributed secondary phases and lots of fine grains,twins,grain boundaries in HPT-ZEK substrates which can provide more nucleation sites for the HA crystal.In terms of the amount of Mg(OH)2 nanopowder,Mg(OH)2 nanopowder significantly influenced the microstructure and thickness of the HA coating.And at a 0.3 mg/mL content of Mg(OH)2 nanopowder,there was the densest,thickest HA coating on magnesium alloys,and the crystal size of HA was minimum.Specifically,the HA coating thickness on ZEK-03(0.3 mg/mL Mg(OH)2 nanopowder)was 1.8 times of that on ZEK-00(0 mg/mL Mg(OH)2 nanopowder),while the HA coating thickness on HPT-03 was 2.6 times of that on ZEK-00.And the adhesion strength of HA coating on HPT-03 substrate was better than that on ZEK-03.In addition,HPT technology and surface modification by HA coating simultaneously increased the corrosion resistance of ZEK100 magnesium alloy and the corrosion of HPT-ZEK samples occurred in a more uniform manner,while it was pitting on the surface of ZEK100 magnesium alloy.Therefore,there was the best corrosion resistance on HPT-03 sample,which could promote the application of magnesium alloys in biomedical fields.
基金Project(10033135-2009-11) supported by the Korean Ministry of Knowledge Economy (MKE) through HNK. Co,Ltd.
文摘For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machine tool spindle system with geared transmission.By using the elementary method and Runge-Kutta method in Matlab,the eigenvalue problem was solved and the pure torsional vibration responses were obtained and examined.The results show that the spindle system cannot operate in the desired constant rotating speed as far as the gravitational unbalance torque is engaged,so it may cause bad effect on machining accuracy.And the torsional vibration increases infinitely near the resonant frequencies,so the spindle system cannot operate normally during these spindle speed ranges.
文摘The distribution of shear stress on the cross-section of plastic metal solid circular shaft under pure torsion yielding, the applicability of complete plastic model assumption and the shear stress formula were researched. Based on the shear stress formula of circular shaft under pure torsion in elastic stage, the formula of torque in elastic stage and the definition of yield, it is obtained that the yielding stage of plastic metal shaft under pure torsion is only a surface phenomenon of torque-torsion angle relationship, and the distribution of shear stress is essentially different from that of tensile stress when yielding under uniaxial tension. The pure torsion platform-torsion angle and the shape of torque-torsion angle curve cannot change the distribution of shear stress on the shaft cross-section. The distribution of shear stress is still linear with the maximum shear stress ts. The complete plasticity model assumption is not in accordance with the actual situation of shaft under torsion. The experimental strength data of nine plastic metals are consistent with the calculated results of the new limiting strain energy strength theory (LSEST). The traditional yield stress formula for plastic shaft under torsion is reasonable. The shear stress formula based on the plane assumption in material mechanics is applicable for all loaded stages of torsion shaft.
基金Project(51205415)supported by the National Natural Science Foundation of ChinaProject(14JJ3020)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2013M542129)supported by China Postdoctoral Science FoundationProject(2012QNZT014)supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by the Postdoctoral Foundation of Central South University,China
文摘Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce the torsional vibration of the hybrid construction machinery complex shafting, torsional vibration active control was proposed. The three-mass model of coaxial shafting of hybrid construction machinery was established. The PID control and the fuzzy sliding mode control were chosen to weaken torsional vibration by controlling the motor speed and torque. The simulation results show that the fuzzy sliding mode control has 12% overshoot of the PID control when the engine torque changes. The active control is effective and can realize smooth power switch.
文摘A three-dimensional elasto-plastic finite element analysis of pre-twist process for a torsional axis made of 45GrNiMoVA steel, was carried out using a commercial finite element analysis code, MSC MARC 2001. The results show that the critical pre-twist strain angle is 0.027 rad and the maximum elastic shear stress after pre-twist is 1694MPa for the torsional axis.
文摘Objective To assess the relationship of myocardial strain and torsion and quantitative heart function scores in patients with coronary heart disease after PTCA.Methods A total of 90 patients with coronary artery disease after PTCA were randomly divided into clinically normal heart function group(group A,n=43)and abnormal heart function group(group B,n=47),and 30 healthy people matched with age and gender as the control group(group C,n=30).
基金the support from SOLVE: The Virtual Lab @ NITK (Grant number: No.F.16-35/2009-DL, Ministry of Human Resources Development)
文摘Vibration isolation is an effective method to mitigate unwanted disturbances arising from dynamic loading conditions. With smart materials as suitable substitutes, the conventional passive isolators have attained attributes of semi-active as well as the active control system. In the present study, the non-homogenous field-dependent isolation capabilities of the magnetorheological elastomer are explored under torsional vibrations. Torsional natural frequency was measured using the serial arrangement of accelerometers. Novel methods are introduced to evaluate the torsional stiffness variations of the isolator for a semi-definite and a motor-coupled rotor system. For the semi-definite system, the isolation effect was studied using the frequency response functions from the modal analysis. The speed-dependent variations for motor-coupled rotor system were assessed using the shift in frequency amplitudes from torque transducers. Finite element method magnetics was used to study the variations in the non-homogenous magnetic field across the elastomer. The response functions for the semi-definite rotor system reveal a shift in the frequency in the effect of the magnetic field. Speed-dependent variations in the frequency domain indicate an increment of 9% in the resonant frequency of the system.
文摘High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate torsional vibration. This paper presents the construction of a highly compact HSLDS torsional vibration isolator by connecting positive and negative stiffness components in paral lel. Based on mechanical model analysis, the restoring torque of negative stiffness components is de rived from their springs and connecting rods, while that of positive stiffness components is obtained through their circular section flexible rods. The quasizero stiffness characteristics of the HSLDS iso lator are achieved through a combination of static structural simulation and experimental test. The tor sional vibration isolation performance is assessed by means of numerical simulation and theory analy sis. Finally, the frequency-sweep vibration test is conducted. The test results indicate that the HSLDS torsional vibration isolator exhibits superior low-frequency isolation performance compared to its linear counterpart, rendering it a promising solution for mitigating low-frequency torsional vi bration in ship shafting.
基金Project(11102163)supported by the National Natural Science Foundation of ChinaProjects(JC20110218,JC20110260)supported by Foundation for Fundamental Research of Northwestern Polytechnical University,China
文摘Stability analyses of perfect and imperfect cylindrical shells under axial compression and torsion were presented. Finite element method for the stability analysis of perfect cylindrical shells was put forward through comparing critical loads and the first buckling modes with those obtained through theoretical analysis. Two typical initial defects, non-circularity and uneven thickness distribution, were studied. Critical loads decline with the increase of non-circularity, which exist in imperfect cylindrical shells under both axial compression and torsion. Non-circularity defect has no effect on the first buckling mode when cylindrical shell is under torsion. Unfortunately, it has a completely different buckling mode when cylindrical shell is under axial compression. Critical loads decline with the increase of thickness defect amplitude, which exist in imperfect cylindrical shells under both axial compression and torsion, too. A greater wave number is conducive to the stability of cylindrical shells. The first buckling mode of imperfect cylindrical shells under torsion maintains its original shape, but it changes with wave number when the cylindrical shell is under axial compression.