针对入侵检测数据量大,而文献[1]提出的α核心集的多层凝聚算法计算复杂度过高,影响实际应用的问题,提出一种基于熵重要测度权重粗糙集的α核心集多层凝聚入侵分类算法。首先,基于熵重要测度权重方法利用粗糙集对入侵检测数据进行预处...针对入侵检测数据量大,而文献[1]提出的α核心集的多层凝聚算法计算复杂度过高,影响实际应用的问题,提出一种基于熵重要测度权重粗糙集的α核心集多层凝聚入侵分类算法。首先,基于熵重要测度权重方法利用粗糙集对入侵检测数据进行预处理和属性约简,降低数据维数防止算法陷入"维数陷阱";其次,用熵重要测度权重距离代替阿尔法多层凝聚算法的欧式距离计算个体相似度,并实现粗糙集输出数据与阿尔法多层凝聚算法的有效对接。通过实验表明,基于熵重要测度权重粗糙集的α核心集多层凝聚入侵分类算法能够更加有效对KDD CUP 99标准数据库进行检测分类。展开更多
文摘针对入侵检测数据量大,而文献[1]提出的α核心集的多层凝聚算法计算复杂度过高,影响实际应用的问题,提出一种基于熵重要测度权重粗糙集的α核心集多层凝聚入侵分类算法。首先,基于熵重要测度权重方法利用粗糙集对入侵检测数据进行预处理和属性约简,降低数据维数防止算法陷入"维数陷阱";其次,用熵重要测度权重距离代替阿尔法多层凝聚算法的欧式距离计算个体相似度,并实现粗糙集输出数据与阿尔法多层凝聚算法的有效对接。通过实验表明,基于熵重要测度权重粗糙集的α核心集多层凝聚入侵分类算法能够更加有效对KDD CUP 99标准数据库进行检测分类。
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60573069)国家教育部科学技术研究重点项目计划(the Key Scientific and Technical Research Project of Ministry of Education of China under Grant No.20602)+1 种基金河北省自然科学基金(the Natural Science Foundation of Hebei Province under Grant No.F2004000129)河北省教育厅科研计划重点项目(the Key Scientific Research Project of Department of Education of Hebei Province of China under Grant No.2005011D)