【Background】The application of beneficial-microbial seed soaking prior to sowing represents a novel technology that has not been employed in Lanzhou lily cultivation.We conducted an experiment to explore the impact ...【Background】The application of beneficial-microbial seed soaking prior to sowing represents a novel technology that has not been employed in Lanzhou lily cultivation.We conducted an experiment to explore the impact of this soaking method on the fungal and bacterial community structures using next-generation sequencing technology(NGS).【Methods】Lily bulbs were soaked in a seed treating agent containing beneficial microbes(SP treatment)for 4 hours.Subsequently,they were planted in soil in July and sampled in September to assess plant growth,rhizosphere soil physicochemical properties,and microorganism community structures.In addition,we employed the software PICRUSt and FUNGuild to predict bacterial pathways and fungal functions.【Results】Under SP treatment,there were significant alterations in fungi and bacteria community structures,accompanied by improved soil nutrient status.Notably,the relative abundance of dominant microorganism groups,such as the fungi Basidiomycota,Pseudeurotium,Cladophialophora,Microascus,and Dactylonectria,as well as the bacteria Proteobacteria,Chloroflexi,Ochrobactrium,Lysobacter,and RB41,underwent notable changes.Microorganism function prediction results indicated a reduction in pathotrophic fungi(including plant pathogens)and an increase in endophytic and saprotrophic fungi under SP treatment.Among the top 20 metabolism pathways,80%were upregulated in SP treatment compared to the CK.【Conclusions】Seed soaking with beneficial microbial strain promotes the growth of Lanzhou lily bulbs.The beneficial microorganisms play a crucial role in regulating soil microbial structures,enhancing the accumulation of endophytic fungi,reducing the abundance of pathogens,and improving soil functions.Furthermore,specific microbial groups are found to be involved in maintaining soil health.展开更多
[KG(0.01mm]This study focuses on the community structure of aggregated bacteria in Lake Baikal and relationships with free-living bacteria. Fluorescent in situ hybridization (FISH) methods were used in samples of bact...[KG(0.01mm]This study focuses on the community structure of aggregated bacteria in Lake Baikal and relationships with free-living bacteria. Fluorescent in situ hybridization (FISH) methods were used in samples of bacteria taken in April, 2001. Bacterial counts of free-living bacteria by DAPI staining ranged from 0.2×10 6 to 3.2×10 6 cells·mL -1, decreasing with depth, whereas aggregated bacterial numbers dramatically increased with depth, ranging from 0.4×10 4 to 3.3×10 4 cells·mL -1. Ratios of EUB probe binding cells to DAPI counts ranged from 52.3 to 74.1% in free-living bacteria and from 39.6 to 66.7% in aggregated bacteria, respectively. Community composition of aggregated bacteria was very different from free-living bacteria, especially at 25m depth where highest phytoplankton numbers were observed. The vertical profile of aggregated bacteria community was very characteristic. Beta-Proteobacteria increased with depth down to 100m. At 250m, gamma-Proteobacteria was 44% of DAPI bound cells, while other groups were less than 1%. We conclude that community structures of free-living and aggregated bacteria were different, and they may sustain the ecosystem in independent ways.展开更多
文摘【Background】The application of beneficial-microbial seed soaking prior to sowing represents a novel technology that has not been employed in Lanzhou lily cultivation.We conducted an experiment to explore the impact of this soaking method on the fungal and bacterial community structures using next-generation sequencing technology(NGS).【Methods】Lily bulbs were soaked in a seed treating agent containing beneficial microbes(SP treatment)for 4 hours.Subsequently,they were planted in soil in July and sampled in September to assess plant growth,rhizosphere soil physicochemical properties,and microorganism community structures.In addition,we employed the software PICRUSt and FUNGuild to predict bacterial pathways and fungal functions.【Results】Under SP treatment,there were significant alterations in fungi and bacteria community structures,accompanied by improved soil nutrient status.Notably,the relative abundance of dominant microorganism groups,such as the fungi Basidiomycota,Pseudeurotium,Cladophialophora,Microascus,and Dactylonectria,as well as the bacteria Proteobacteria,Chloroflexi,Ochrobactrium,Lysobacter,and RB41,underwent notable changes.Microorganism function prediction results indicated a reduction in pathotrophic fungi(including plant pathogens)and an increase in endophytic and saprotrophic fungi under SP treatment.Among the top 20 metabolism pathways,80%were upregulated in SP treatment compared to the CK.【Conclusions】Seed soaking with beneficial microbial strain promotes the growth of Lanzhou lily bulbs.The beneficial microorganisms play a crucial role in regulating soil microbial structures,enhancing the accumulation of endophytic fungi,reducing the abundance of pathogens,and improving soil functions.Furthermore,specific microbial groups are found to be involved in maintaining soil health.
基金the Korea Science and Engineering Foundation(2002-201-02-2)
文摘[KG(0.01mm]This study focuses on the community structure of aggregated bacteria in Lake Baikal and relationships with free-living bacteria. Fluorescent in situ hybridization (FISH) methods were used in samples of bacteria taken in April, 2001. Bacterial counts of free-living bacteria by DAPI staining ranged from 0.2×10 6 to 3.2×10 6 cells·mL -1, decreasing with depth, whereas aggregated bacterial numbers dramatically increased with depth, ranging from 0.4×10 4 to 3.3×10 4 cells·mL -1. Ratios of EUB probe binding cells to DAPI counts ranged from 52.3 to 74.1% in free-living bacteria and from 39.6 to 66.7% in aggregated bacteria, respectively. Community composition of aggregated bacteria was very different from free-living bacteria, especially at 25m depth where highest phytoplankton numbers were observed. The vertical profile of aggregated bacteria community was very characteristic. Beta-Proteobacteria increased with depth down to 100m. At 250m, gamma-Proteobacteria was 44% of DAPI bound cells, while other groups were less than 1%. We conclude that community structures of free-living and aggregated bacteria were different, and they may sustain the ecosystem in independent ways.