特高压(ultra high voltage,UHV)交流与直流线路同廊道运行时带电作业区域电压高、场强大,交直流混合电场比单一电场更为复杂。为确保作业人员安全,结合实际±1100 kV直流和1000 kV交流线路,建立了包含输电导线、杆塔及带电作业人...特高压(ultra high voltage,UHV)交流与直流线路同廊道运行时带电作业区域电压高、场强大,交直流混合电场比单一电场更为复杂。为确保作业人员安全,结合实际±1100 kV直流和1000 kV交流线路,建立了包含输电导线、杆塔及带电作业人员的三维计算模型,通过分析开展带电作业时人员的体表混合场强、电位转移电流及暂态能量,对作业人员安全防护进行研究。结果表明:随着作业人员不断接近直流线路,体表场强受交流线路影响越明显,最高可使作业人员体表场强增大约9%,达到1920 kV/m;交流线路的存在将导致电位转移电流增长约7%,但对暂态能量影响较小。通过对特高压线路不停电检修所减少的碳排放量进行进一步计算,验证了特高压带电作业对减少碳排放具有促进作用。展开更多
基于MD500直升机和国内1 000 k V三角形排布输电线路的实际参数,建立了直升机带电作业平台(HLLWP)模型。在不同的直升机带电作业平台的侵入角度和直升机带电作业平台与导线的距离下,通过有限元方法计算了直升机带电作业平台和操作人员...基于MD500直升机和国内1 000 k V三角形排布输电线路的实际参数,建立了直升机带电作业平台(HLLWP)模型。在不同的直升机带电作业平台的侵入角度和直升机带电作业平台与导线的距离下,通过有限元方法计算了直升机带电作业平台和操作人员身体表面的电场强度。考虑操作人员的人身安全,提出了直升机带电作业平台靠近不同相导线时的侵入路径。展开更多
500 k V与220 k V交流同塔四回输电线路与单一电压等级超高压线路的空间分布具有较大区别,线路带电作业电场环境更为复杂。笔者采用有限元法仿真计算同塔四回输电线路典型带电作业位置的电场分布特点,通过建立人体仿真模型,计算分析等...500 k V与220 k V交流同塔四回输电线路与单一电压等级超高压线路的空间分布具有较大区别,线路带电作业电场环境更为复杂。笔者采用有限元法仿真计算同塔四回输电线路典型带电作业位置的电场分布特点,通过建立人体仿真模型,计算分析等电位和地电位典型作业工况下人体不同部位的电场强度,进而确定带电作业人员安全防护措施。结果表明,等电位作业时需穿屏蔽效率为40 d B的防护服,地电位作业人员穿戴常规防护服可满足作业要求。展开更多
文摘基于MD500直升机和国内1 000 k V三角形排布输电线路的实际参数,建立了直升机带电作业平台(HLLWP)模型。在不同的直升机带电作业平台的侵入角度和直升机带电作业平台与导线的距离下,通过有限元方法计算了直升机带电作业平台和操作人员身体表面的电场强度。考虑操作人员的人身安全,提出了直升机带电作业平台靠近不同相导线时的侵入路径。
文摘500 k V与220 k V交流同塔四回输电线路与单一电压等级超高压线路的空间分布具有较大区别,线路带电作业电场环境更为复杂。笔者采用有限元法仿真计算同塔四回输电线路典型带电作业位置的电场分布特点,通过建立人体仿真模型,计算分析等电位和地电位典型作业工况下人体不同部位的电场强度,进而确定带电作业人员安全防护措施。结果表明,等电位作业时需穿屏蔽效率为40 d B的防护服,地电位作业人员穿戴常规防护服可满足作业要求。