期刊文献+
共找到500篇文章
< 1 2 25 >
每页显示 20 50 100
基于CNN-GraphSAGE双分支特征融合的齿轮箱故障诊断方法 被引量:1
1
作者 韩延 吴迪 +1 位作者 黄庆卿 张焱 《电子测量与仪器学报》 北大核心 2025年第3期115-124,共10页
针对卷积神经网络(CNN)在振动数据结构信息上挖掘不足导致故障诊断精度不高的问题,提出一种基于卷积神经网络与图采样和聚合网络(CNN-GraphSAGE)双分支特征融合的齿轮箱故障诊断方法。首先,对齿轮箱振动数据进行小波包分解,利用分解后... 针对卷积神经网络(CNN)在振动数据结构信息上挖掘不足导致故障诊断精度不高的问题,提出一种基于卷积神经网络与图采样和聚合网络(CNN-GraphSAGE)双分支特征融合的齿轮箱故障诊断方法。首先,对齿轮箱振动数据进行小波包分解,利用分解后的小波包特征系数构建包含节点和边的图结构数据;然后,建立CNN-GraphSAGE双分支特征提取网络,在CNN分支中采用空洞卷积网络提取数据的全局特征,在GraphSAGE网络分支中通过多层特征融合策略来挖掘数据结构中隐含的关联信息;最后,基于SKNet注意力机制融合提取的双分支特征,并输入全连接层中实现对齿轮箱的故障诊断。为验证研究方法在齿轮箱故障诊断上的优良性能,首先对所提方法进行消融实验,然后在无添加噪声和添加1 dB噪声的条件下进行对比实验。实验结果表明,即使在1 dB噪声的条件下,研究方法的平均诊断精度为92.07%,均高于其他对比模型,证明了研究方法能够有效地识别齿轮箱的各类故障。 展开更多
关键词 图卷积神经网络 卷积神经网络 故障诊断 注意力机制
在线阅读 下载PDF
基于通道自注意图卷积网络的运动想象脑电分类实验 被引量:1
2
作者 孟明 张帅斌 +2 位作者 高云园 佘青山 范影乐 《实验技术与管理》 北大核心 2025年第2期73-80,共8页
该文将运动想象脑电分类任务设计成应用型教学实验。针对传统图卷积网络(graph convolutional neural networks,GCN)无法建模脑电通道间动态关系问题,提出一种融合通道注意机制的多层图卷积网络模型(channel self-attention multilayer ... 该文将运动想象脑电分类任务设计成应用型教学实验。针对传统图卷积网络(graph convolutional neural networks,GCN)无法建模脑电通道间动态关系问题,提出一种融合通道注意机制的多层图卷积网络模型(channel self-attention multilayer GCN,CAMGCN)。首先,CAMGCN计算脑电信号各个通道间的皮尔逊相关系数进行图建模,并通过通道位置编码模块学习通道间关系。然后将得到的时域和频域特征分量通过通道自注意图嵌入模块进行图嵌入,得到图数据。最后通过多级GCN模块提取并融合多层次拓扑信息,得出分类结果。CAMGCN深化了模型在自适应学习通道间动态关系的能力,并在结构方面提高了自注意机制与图数据的适配性。该模型在BCI Competition-Ⅳ2a数据集上的准确率达到83.8%,能够有效实现对运动想象任务的分类。该实验有助于增进学生对于深度学习和脑机接口的理解,培养创新思维,提高科研素质。 展开更多
关键词 脑机接口 脑电图 图卷积网络 注意力机制
在线阅读 下载PDF
基于Bert+GCN多模态数据融合的药物分子属性预测 被引量:1
3
作者 闫效莺 靳艳春 +1 位作者 冯月华 张绍武 《生物化学与生物物理进展》 北大核心 2025年第3期783-794,共12页
目的药物研发成本高、周期长且成功率低。准确预测分子属性对有效筛选药物候选物、优化分子结构具有重要意义。基于特征工程的传统分子属性预测方法需研究人员具备深厚的学科背景和广泛的专业知识。随着人工智能技术的不断成熟,涌现出... 目的药物研发成本高、周期长且成功率低。准确预测分子属性对有效筛选药物候选物、优化分子结构具有重要意义。基于特征工程的传统分子属性预测方法需研究人员具备深厚的学科背景和广泛的专业知识。随着人工智能技术的不断成熟,涌现出大量优于传统特征工程方法的分子属性预测算法。然而这些算法模型仍然存在标记数据稀缺、泛化性能差等问题。鉴于此,本文提出一种基于Bert+GCN的多模态数据融合的分子属性预测算法(命名为BGMF),旨在整合药物分子的多模态数据,并充分利用大量无标记药物分子训练模型学习药物分子的有用信息。方法本文提出了BGMF算法,该算法根据药物SMILES表达式分别提取了原子序列、分子指纹序列和分子图数据,采用预训练模型Bert和图卷积神经网络GCN结合的方式进行特征学习,在挖掘药物分子中“单词”全局特征的同时,融合了分子图的局部拓扑特征,从而更充分利用分子全局-局部上下文语义关系,之后,通过对原子序列和分子指纹序列的双解码器设计加强分子特征表达。结果5个数据集共43个分子属性预测任务上,BGMF方法的AUC值均优于现有其他方法。此外,本文还构建独立测试数据集验证了模型具有良好的泛化性能。对生成的分子指纹表征(molecular fingerprint representation)进行t-SNE可视化分析,证明了BGMF模型可成功捕获不同分子指纹的内在结构与特征。结论通过图卷积神经网络与Bert模型相结合,BGMF将分子图数据整合到分子指纹恢复和掩蔽原子恢复的任务中,可以有效地捕捉分子指纹的内在结构和特征,进而高效预测药物分子属性。 展开更多
关键词 Bert预训练 注意力机制 分子指纹 分子属性预测 图卷积神经网络
在线阅读 下载PDF
面向领域知识图谱的实体关系抽取模型仿真 被引量:3
4
作者 何山 肖晰 张嘉玲 《吉林大学学报(理学版)》 北大核心 2025年第2期465-471,共7页
针对目前领域知识图谱实体关系抽取效果不佳的问题,提出一种面向领域知识图谱的实体关系抽取模型研究方法.先建立由编解码模块、实体识别模块和实体关系抽取模块组成的实体关系抽取模型,在实体关系抽取模型中,通过双向长短期记忆神经网... 针对目前领域知识图谱实体关系抽取效果不佳的问题,提出一种面向领域知识图谱的实体关系抽取模型研究方法.先建立由编解码模块、实体识别模块和实体关系抽取模块组成的实体关系抽取模型,在实体关系抽取模型中,通过双向长短期记忆神经网络对文本句子进行编码处理,将编码后文本句子特征表示向量输入至基于深度神经网络的实体识别模块中进行文本句子的实体识别,并将识别结果输入至基于卷积神经网络的实体关系抽取模块中进行实体关系抽取,然后将实体关系抽取获取的实体关系三元组输入至编解码模块中进行解码操作,实现最终的面向领域知识图谱的实体关系抽取.实验结果表明,该方法的实体关系抽取效果和整体应用效果较好. 展开更多
关键词 知识图谱 实体关系抽取 实体识别 卷积神经网络
在线阅读 下载PDF
聚合全局交互与局部交互的知识图谱补全
5
作者 冯勇 栾超杰 +2 位作者 王嵘冰 徐红艳 张永刚 《计算机科学与探索》 北大核心 2025年第7期1909-1917,共9页
知识图谱的不完整性严重影响了下游任务的应用与发展,因此,有必要对其进行改进以补充缺失值,即知识图谱补全。现有的知识图谱补全模型大多重组实体关系嵌入表示以捕获局部交互。但这种方法破坏了三元组的原有结构,只能利用单一的局部交... 知识图谱的不完整性严重影响了下游任务的应用与发展,因此,有必要对其进行改进以补充缺失值,即知识图谱补全。现有的知识图谱补全模型大多重组实体关系嵌入表示以捕获局部交互。但这种方法破坏了三元组的原有结构,只能利用单一的局部交互而忽略了实体关系间全局交互的影响。为此,提出一种聚合全局交互与局部交互的知识图谱补全方法AGILI。该方法首先引入自注意力机制获取头实体和关系间的信息关联程度,生成融入全局交互信息的嵌入表示,再采用卷积神经网络从新嵌入表示中提取局部交互信息,设计基于关系权重的可学习交互聚合器,在将全局交互与局部交互进行特征融合时,可以根据关系类别自适应地调整两种交互的重要程度,提高方法在多关系知识图谱上的表达能力。在公开数据集FB15k-237、WN18RR和Kinship上通过链接预测任务进行实验验证,实验结果表明,与最新的基于卷积神经网络的模型ConvD相比,所提出的方法在FB15k-237数据集上Hits@1、Hits@3指标分别提高了6.9%、5.3%,证明了所提出方法的优越性。 展开更多
关键词 知识图谱 知识图谱补全 链接预测 自注意力机制 卷积神经网络
在线阅读 下载PDF
基于双图神经网络的会话推荐算法
6
作者 李忠伟 吴金燠 +2 位作者 刘昕 周洁 李可一 《计算机工程与设计》 北大核心 2025年第1期23-29,共7页
针对现有会话推荐算法缺乏对属性信息利用的问题,提出一种基于双图神经网络的会话推荐算法(SR-DGNN)。分别构建会话图和全局相似图学习项目的时序特征和内容特征表示,设计相似度图卷积网络(S-GCN)对全局相似图进行建模。设计基于注意力... 针对现有会话推荐算法缺乏对属性信息利用的问题,提出一种基于双图神经网络的会话推荐算法(SR-DGNN)。分别构建会话图和全局相似图学习项目的时序特征和内容特征表示,设计相似度图卷积网络(S-GCN)对全局相似图进行建模。设计基于注意力机制的融合策略对项目的特征表示进行聚合,获取会话的全局表示。综合考虑用户的长期和短期兴趣,预测用户偏好。在KKBOX和MIND两个数据集上进行了大量实验,实验结果表明,所提模型优于现有基准模型。 展开更多
关键词 推荐系统 会话推荐 图神经网络 会话图 全局相似图 相似度图卷积网络 注意力机制
在线阅读 下载PDF
基于改进的时空卷积神经网络的脑电情绪识别
7
作者 朱琳 高瞻 +1 位作者 邵叶秦 王华容 《计算机应用与软件》 北大核心 2025年第11期207-214,220,共9页
为了提高机器端到端识别情绪的能力,提出一种改进的时空卷积神经网络ESTNet,其主要由四个模块组成:核注意力、空间学习、时间学习和融合。根据脑电信号的采样频率设计核的大小,并在时空模块利用可并行计算的Transformer模型和图神经网... 为了提高机器端到端识别情绪的能力,提出一种改进的时空卷积神经网络ESTNet,其主要由四个模块组成:核注意力、空间学习、时间学习和融合。根据脑电信号的采样频率设计核的大小,并在时空模块利用可并行计算的Transformer模型和图神经网络对脑电信号的时间域和空间域解码,并利用卷积神经网络融合时空特征。在DEAP数据集上的实验结果表明,在Valence标签下ESTNet均优于当前主流的网络。另外,为寻找主观情绪状态与生物学之间的客观关联性,基于脑电信号的可视化操作,借助脑地形图对相关情绪理论做了解释性说明。 展开更多
关键词 脑电情绪识别 图神经网络 Transformer模型 时空卷积神经网络 脑地形图
在线阅读 下载PDF
基于多重相似性和增强注意力预测药物-靶标相互作用
8
作者 王伟 余梦雪 +5 位作者 孙斌 万仕彤 刘栋 周运 张红军 王鲜芳 《河南师范大学学报(自然科学版)》 北大核心 2025年第2期99-107,共9页
在新药发现和药物重定位研究中,发现药物与靶标之间的相互作用是重要的研究内容.针对药物与靶标相互作用网络,提出一种基于多重相似性和增强注意力机制的图卷积神经网络模型(RSGCN)预测药物-靶标相互作用.首先,提出了多重相似性来捕捉... 在新药发现和药物重定位研究中,发现药物与靶标之间的相互作用是重要的研究内容.针对药物与靶标相互作用网络,提出一种基于多重相似性和增强注意力机制的图卷积神经网络模型(RSGCN)预测药物-靶标相互作用.首先,提出了多重相似性来捕捉网络结构特征,以充分利用节点间的直接或间接关系.然后,通过PCA降维减少相似性噪声对实验结果的影响.最后,采用图卷积神经网络(graph convolution neural network,GCN)获得节点嵌入表示,并融入基于注意力的增强层,通过增强注意力机制获得节点间的注意力权重,能够高效地预测药物与靶标之间的相互作用.在黄金标准数据集上的实验结果表明RSGCN模型具有较好的性能. 展开更多
关键词 图卷积神经网络(GCN) 多重相似性 PCA 增强注意力机制 药物-靶标相互作用
在线阅读 下载PDF
基于图卷积神经网络的多属性个性化航空行程推荐系统
9
作者 彭明田 王味帅 +5 位作者 田丰 李江涛 卢燕 马淑燕 朱红林 刘驰 《计算机科学》 北大核心 2025年第S2期628-633,共6页
航空市场的快速扩展使航班选择愈加复杂,旅客难以从海量信息中选出最佳方案。现有航空行程推荐系统多采用按价格、时间或准点率排序的静态方法,难以兼顾用户个性化需求和多联程航班组合的复杂性。针对这种情况,提出了基于图卷积神经网... 航空市场的快速扩展使航班选择愈加复杂,旅客难以从海量信息中选出最佳方案。现有航空行程推荐系统多采用按价格、时间或准点率排序的静态方法,难以兼顾用户个性化需求和多联程航班组合的复杂性。针对这种情况,提出了基于图卷积神经网络的多属性个性化航空行程推荐系统,以图结构数据处理提升推荐精度和个性化效果。该系统构建航班数据的图结构模型,细化航班关键属性,并将用户历史购票行为转化为图节点间的交互信息。通过图卷积神经网络逐层特征聚合,捕捉用户与航班属性间的高阶关系。实验结果表明,该模型有效结合用户偏好与航班静态属性,显著提高了推荐系统的性能与准确性,为用户提供更优的行程建议。 展开更多
关键词 图卷积神经网络 航空行程推荐系统 个性化推荐 多联程航班 用户行为分析
在线阅读 下载PDF
基于多维注意力机制的高速公路交通流量预测方法
10
作者 虞安军 励英迪 +5 位作者 杨哲懿 付崇宇 童蔚苹 余佳 刘云海 刘志远 《汽车安全与节能学报》 北大核心 2025年第3期463-469,共7页
为了实现精准的交通流量预测,提高高速公路智慧管理水平,该文构建了一种基于多维注意力机制的交通流量预测模型,并在樟吉高速公路真实交通数据集上开展对比实验,以验证模型的准确性及预测精度。模型基于图神经网络(GNN)和时间卷积网络(T... 为了实现精准的交通流量预测,提高高速公路智慧管理水平,该文构建了一种基于多维注意力机制的交通流量预测模型,并在樟吉高速公路真实交通数据集上开展对比实验,以验证模型的准确性及预测精度。模型基于图神经网络(GNN)和时间卷积网络(TCN)提取交通流空间和时间维度的特征,结合多维注意力机制挖掘时空数据中的关键信息,同时引入多任务学习架构,通过基于同方差不确定性的损失函数来平衡不同任务共同学习,以提高模型的泛化能力和鲁棒性。结果表明:该模型在测试集上的均方根误差(RMSE)和平均绝对误差(MAE)分别为7.467和5.133,相较基准模型有更好的预测精度;提出的该交通流量预测方法可有效地挖掘交通流的时空特性,描述真实交通运行状态,对高速公路交通流量做出精准预测。 展开更多
关键词 交通流预测 图神经网络(GNN) 时间卷积网络(TCN) 多维注意力机制
在线阅读 下载PDF
以太坊庞氏骗局智能合约的早期检测方法研究
11
作者 张艳梅 郭思颖 +1 位作者 贾恒越 姜茸 《通信学报》 北大核心 2025年第9期292-306,共15页
以太坊是区块链的典型应用代表,它允许开发者创建和执行智能合约。以太坊技术的迅猛发展在推动智能合约普及的同时,也引发链上安全风险剧增,其中算法驱动的智能庞氏骗局给区块链应用带来了新的安全挑战。为了实现对智能合约庞氏骗局的... 以太坊是区块链的典型应用代表,它允许开发者创建和执行智能合约。以太坊技术的迅猛发展在推动智能合约普及的同时,也引发链上安全风险剧增,其中算法驱动的智能庞氏骗局给区块链应用带来了新的安全挑战。为了实现对智能合约庞氏骗局的早期检测,提出了一种基于图卷积网络(GCN)的检测方法PonziGCN。该方法融合了智能合约的语义特征和控制流图特征,通过提取字节码相似度、操作码频率等语义特征,以及控制流图的基本特征和结构特征,构建了多特征融合的检测框架。实验结果表明,所提方法在精确率、召回率、F值和AUC值等关键性能指标上均表现优异,精确率达到0.982,召回率为0.987,F值为0.978,AUC值为0.983,显著优于现有的算法。特征重要性分析表明,图结构特征和代码中与交易功能相关的操作码频率特征在模型中具有最高的重要性。 展开更多
关键词 以太坊 智能合约 庞氏骗局 图卷积神经网络 控制流图
在线阅读 下载PDF
基于关系图卷积神经网络的跨句实体关系抽取
12
作者 陈千 关春祥 +1 位作者 郭鑫 王素格 《中文信息学报》 北大核心 2025年第7期62-71,共10页
相对于句子级关系抽取,涉及关系的实体存在于多个句子中的情况在实际场景中更常见。因此篇章级关系抽取逐渐成为近年来信息抽取领域的研究热点。为了充分利用上下文信息和篇章结构信息,该文采用实体嵌入表示和实体间的显式结构关系研究... 相对于句子级关系抽取,涉及关系的实体存在于多个句子中的情况在实际场景中更常见。因此篇章级关系抽取逐渐成为近年来信息抽取领域的研究热点。为了充分利用上下文信息和篇章结构信息,该文采用实体嵌入表示和实体间的显式结构关系研究跨句实体关系抽取。首先,对篇章进行编码和构图;进而,使用关系图卷积神经网络对图节点进行更新,并利用融合篇章全局信息的节点嵌入表示更新边嵌入表示;最后,该模型使用一种迭代算法完成边信息的推理,实现跨句实体关系抽取。实验结果表明,相比基线模型,在CDR和GDA数据集上的跨句实体关系抽取性能得到了显著提高。 展开更多
关键词 关系图卷积神经网络 跨句实体关系抽取 实体嵌入
在线阅读 下载PDF
融合时空特征的多模态车辆轨迹预测方法
13
作者 史昕 王浩泽 +1 位作者 纪艺 马峻岩 《计算机工程与应用》 北大核心 2025年第7期325-333,共9页
针对考虑车辆行驶不确定性的轨迹分布准确快速预测问题,提出了一种融合时空特征的多模态车辆轨迹预测方法(GCNTA)。利用空间关联度系数和图卷积神经网络(GCN)实现空间关联特征提取。构建具有时间注意力机制的时域卷积网络(TCN)完成时间... 针对考虑车辆行驶不确定性的轨迹分布准确快速预测问题,提出了一种融合时空特征的多模态车辆轨迹预测方法(GCNTA)。利用空间关联度系数和图卷积神经网络(GCN)实现空间关联特征提取。构建具有时间注意力机制的时域卷积网络(TCN)完成时间特征提取。通过特征融合门控单元实现每个时间步长对应时空特征的自适应融合,并利用门控循环单元(GRU)网络构建解码器进一步生成未来车辆轨迹的概率分布。利用公开的NGSIM数据集对所提出模型进行消融实验及预测精度分析。仿真结果表明,GCNTA模型在预测误差均方根(RMSE)平均值相比GCN、图注意力网络(GAT)和长短期记忆网络(LSTM)模型分别减少15.6%、16.3%和23.8%。 展开更多
关键词 车辆轨迹预测 深度学习 图神经网络 时域卷积网络 注意力机制
在线阅读 下载PDF
基于动态自适应门控图卷积网络的交通拥堵预测
14
作者 王庆荣 高桓伊 +2 位作者 朱昌锋 何润田 慕壮壮 《华南理工大学学报(自然科学版)》 北大核心 2025年第9期31-47,共17页
随着城市机动车保有量的持续攀升,交通拥堵程度不断加剧,这种现象对环境保护与城市运行效率造成不利影响。因此,精确预测交通拥堵对于交通管理与优化具有重要意义。然而,现有研究在建模交通数据的动态时变特性及复杂路段间交互关系方面... 随着城市机动车保有量的持续攀升,交通拥堵程度不断加剧,这种现象对环境保护与城市运行效率造成不利影响。因此,精确预测交通拥堵对于交通管理与优化具有重要意义。然而,现有研究在建模交通数据的动态时变特性及复杂路段间交互关系方面仍存在一定局限性。针对这一问题,该文提出了一种基于图神经网络的门控时空卷积网络模型,以更有效地刻画和预测交通拥堵状况。首先,通过改进的K-均值聚类算法将原始数据划分为多个拥堵状态类别,并将其作为辅助特征融入预测模型,以增强特征表达能力;然后,引入门控时间卷积网络以捕捉交通数据间的时序特性与动态依赖关系,并构建动态自适应门控图卷积网络,通过信号生成模块与双层调制机制实现特征融合与动态权重分配,从而完成对时空特征的有效提取;最后,引入残差连接以增强训练过程的稳定性,并利用跳跃连接对多层次与多尺度特征进行有效整合。在真实交通数据集PeMS08与PeMS04上对所提模型的有效性进行了验证,结果表明,该模型的预测精度优于其他基线模型。 展开更多
关键词 交通拥堵预测 图神经网络 动态自适应门控 聚类算法 门控时间卷积网络
在线阅读 下载PDF
基于超图神经网络的多尺度信息传播预测模型
15
作者 赵敬华 张柱 +1 位作者 吕锡婷 林慧丹 《计算机应用》 北大核心 2025年第11期3529-3539,共11页
针对现有多尺度信息传播预测模型忽略了级联传播的动态性,以及独立进行微观信息预测时性能有待提高的问题,提出基于超图神经网络的多尺度信息传播预测模型(MIDHGNN)。首先,使用图卷积网络(GCN)提取社交网络图中蕴含的用户社交关系特征,... 针对现有多尺度信息传播预测模型忽略了级联传播的动态性,以及独立进行微观信息预测时性能有待提高的问题,提出基于超图神经网络的多尺度信息传播预测模型(MIDHGNN)。首先,使用图卷积网络(GCN)提取社交网络图中蕴含的用户社交关系特征,使用超图神经网络(HGNN)提取传播级联图中蕴含的用户全局偏好特征,并融合这2类特征进行微观信息传播预测;其次,利用门控循环单元(GRU)连续预测传播用户,直至虚拟用户;再次,将每次预测所得用户总数作为级联的最终规模,完成宏观信息传播预测;最后,在模型中嵌入强化学习(RL)框架,采用策略梯度方法优化参数,提升宏观信息传播预测性能。在微观信息传播预测方面,相较于次优模型,MIDHGNN在Twitter、Douban、Android数据集上的Hits@k指标分别平均提升12.01%、11.64%、9.74%,mAP@k指标分别平均提升31.31%、14.85%、13.24%;在宏观预测方面,MIDHGNN在这3个数据集上的均方对数误差(MSLE)指标分别最少降低8.10%、12.61%、3.24%,各项指标均显著优于对比模型,验证了它的有效性。 展开更多
关键词 信息传播预测 图卷积网络 超图神经网络 强化学习 多尺度
在线阅读 下载PDF
梯度区分与特征范数驱动的开放世界目标检测
16
作者 张英俊 闫薇薇 +2 位作者 谢斌红 张睿 陆望东 《计算机应用》 北大核心 2025年第7期2203-2210,共8页
开放世界目标检测(OWOD)将目标检测任务拓展至真实多变的环境中,要求模型能准确识别已知和未知对象,并逐步学习新知识。针对现有OWOD网络模型中未知类的召回率偏低和误识别的问题,提出一种梯度区分与特征范数驱动的开放世界目标检测(GDF... 开放世界目标检测(OWOD)将目标检测任务拓展至真实多变的环境中,要求模型能准确识别已知和未知对象,并逐步学习新知识。针对现有OWOD网络模型中未知类的召回率偏低和误识别的问题,提出一种梯度区分与特征范数驱动的开放世界目标检测(GDFN-OWOD)网络模型。针对未知类召回率偏低的问题,提出梯度区分性表征模块(GDRM),即利用反向传播的梯度差异区分未知类别和背景,以提高未知类召回率;此外,引入基于图分割的框聚类(GSBC)算法将物体边界框的确定建模为图分解问题,从而减少冗余的边界框,进而降低模型的计算量;针对未知类误识别的问题,采用基于特征范数的分类器(FN-BC)选择性能最优的卷积层识别已知和未知类别,以达到更高的识别准确率。在M-OWODB数据集上的实验结果表明,与最优对比模型相比在T1、T2、T3任务中GDFN-OWOD的未知类召回率分别提升了1.1、2.1、0.9个百分点,而绝对开集误差(A-OSE)分别降低了35.1%、28.7%和12.2%。可见,与现有的OWOD网络模型相比,所提网络模型有效缓解了未知类的召回率偏低和误识别的问题。 展开更多
关键词 开放世界目标检测 反向传播梯度 图分割算法 特征范数 卷积神经网络
在线阅读 下载PDF
基于深度学习的癫痫异常信号检测和分类模型
17
作者 王剑 成婷 +1 位作者 宋政阳 张一丁 《电子测量技术》 北大核心 2025年第17期113-124,共12页
癫痫是一种常见的神经系统疾病,其诊断主要依赖于脑电信号的分析。近年来,基于深度学习的方法在癫痫检测中得到了广泛应用,但这些方法通常依赖于单一的特征提取技术,且大多忽略了EEG信号的空间域特征。为了捕捉EEG信号的空域特征,研究... 癫痫是一种常见的神经系统疾病,其诊断主要依赖于脑电信号的分析。近年来,基于深度学习的方法在癫痫检测中得到了广泛应用,但这些方法通常依赖于单一的特征提取技术,且大多忽略了EEG信号的空间域特征。为了捕捉EEG信号的空域特征,研究人员尝试引入EEG的图表示,并结合图神经网络模型进行建模。然而,现有方法的图表示通常需要每个顶点遍历所有其他顶点来构建图结构,导致较高的时间复杂度,难以满足临床实时诊断的需求。针对上述挑战,首先提出了核心邻域图结构,在此基础上,进一步提出了基于双视图输入的癫痫自动检测和分类框架——DV-SeizureNet。该框架能够同时学习EEG信号的时域、频域和空域特征,实现癫痫异常检测和发作分类。在TUSZ数据集上的实验表明,DV-SeizureNet在癫痫检测任务中达到91.4%的准确率,优于现有最先进方法2.1%。在分类任务中,模型对4种癫痫发作类型的平均分类准确率为82.8%,F1-score为81.2%。DV-SeizureNet通过双视图学习框架,全面提取并融合EEG信号的时空频域特征,在癫痫异常检测和发作分类任务中表现优越,为临床诊断提供了可靠的辅助工具。 展开更多
关键词 癫痫检测 深度学习 EEG信号 双视图学习 图卷积神经网络 多尺度特征融合
在线阅读 下载PDF
QuatCNNEx:一种面向多关系模式的知识图谱嵌入模型
18
作者 熊伟 陈浩 苏鸿宇 《计算机学报》 北大核心 2025年第1期124-135,共12页
在大数据时代,快速的数据增长引发了信息过载的问题。一方面,在海量的数据中人们难以快速获取自己想要的内容;另一方面,一些用户虽然知道自己想要什么,但在不知道如何描述时,搜索引擎往往不能提供帮助。因此如何更加有效地表达和获取有... 在大数据时代,快速的数据增长引发了信息过载的问题。一方面,在海量的数据中人们难以快速获取自己想要的内容;另一方面,一些用户虽然知道自己想要什么,但在不知道如何描述时,搜索引擎往往不能提供帮助。因此如何更加有效地表达和获取有价值的信息是一个挑战。知识图谱是一种被广泛使用的知识模型,可以保存大量节点和边形式的知识。知识图谱嵌入可以通过向量表示知识的语义信息,因此采用知识图谱嵌入模型可以利用图谱中的知识辅助提升人们获取信息的效率。知识图谱嵌入的主要思想是通过连续的向量空间表示知识图谱中实体和关系的语义联系。这种技术在链接预测、问答系统、推荐系统以及自然语言处理领域等知识图谱其他下游任务方面展现出较好的能力。现有的知识图谱嵌入方法主要有基于距离的模型、语义匹配模型、神经网络模型等。这些模型或者没有充分利用实体和关系的交互特征信息,或者组合关系的建模能力较弱。因此,这些方法对知识图谱中多关系模式的三元组表示能力不足。要有效解决多关系模式的建模问题,需要结合上述模型。论文提出将四元数和卷积神经网络结合的嵌入模型QuatCNNEx。该模型借鉴了QuatE的建模思想和CNN的特征提取能力。将建模过程由复数空间扩展至四元数空间,进一步提高嵌入模型的表达能力。QuatCNNEx将嵌入实体和关系的四元数作为CNN模型的输入。该模型使用四元数表达实体和关系更丰富的特征,从而具有建模多关系模式的能力。在此基础上,利用特征嵌入与头实体嵌入的Hadamard积使得头实体嵌入得到关系嵌入的特征。然后,再通过关系嵌入与头实体嵌入的Hamilton积实现头实体在四元数空间中的旋转,得到尾实体的嵌入表示。从而使用Hadamard积和Hamilton积的组合运算,通过迭代优化得到三元组的嵌入表示。通过链接预测实验,论文提出的方法与现有的主要模型在MRR、Hit@3、Hit@1指标上进行了对比。实验结果表明,本文方法在关系数量更多的基准测试集上取得了最优结果。与神经网络模型ConEx和基于四元数的模型QuatE相比,QuatCNNEx在MRR、Hit@3、Hit@1三个指标上分别提高0.3%和0.3%、0.5%和1%、0.4%和0.4%,这表明该模型能够有效利用实体和关系的交互特征信息表示知识图谱中的多关系模式。 展开更多
关键词 知识图谱 链接预测 嵌入表示 四元数 卷积神经网络
在线阅读 下载PDF
基于时空动态图的交通流量预测方法研究
19
作者 孟祥福 谢伟鹏 崔江燕 《智能系统学报》 北大核心 2025年第4期776-786,共11页
为改进现有交通流量预测方法在建模时空数据和捕捉动态空间相关性方面的不足,提出了一种时空动态图卷积网络(spatio-temporal dynamic graph network,STDGNet)。该模型采用带嵌入层的编码器–解码器架构,通过动态图生成模块从数据驱动... 为改进现有交通流量预测方法在建模时空数据和捕捉动态空间相关性方面的不足,提出了一种时空动态图卷积网络(spatio-temporal dynamic graph network,STDGNet)。该模型采用带嵌入层的编码器–解码器架构,通过动态图生成模块从数据驱动的角度挖掘潜在的时空关系,并重构每个时间步的节点动态关联图。嵌入层使用时空自适应嵌入方法建模交通数据的内在时空关系和时间信息;编码器部分利用时空记忆注意力机制,从全局视角对时空特征进行建模;解码器部分将图卷积模块注入循环神经网络中,以同时捕捉时间和空间依赖关系,并输出未来流量情况。实验结果表明,所提模型与最优基线模型解耦动态时空图神经网络(decoupled dynamic spatial-temporal graph neural network,D2STGNN)相比,平均绝对误差降低了1.63%,模型训练时间缩短了近2.5倍。本研究有效提升了交通流量预测的准确性与效率,为智能交通系统的建设提供了有力支撑。 展开更多
关键词 交通流量 时空数据 混合模型 注意力机制 时空动态图 图卷积神经网络 循环神经网络 深度学习
在线阅读 下载PDF
基于超图卷积和多角度拓扑细化的骨骼行为识别方法
20
作者 黄倩 苏新凯 +1 位作者 李畅 巫义锐 《计算机科学》 北大核心 2025年第5期220-226,共7页
由于人体骨架是一个天然存在的拓扑结构,因此图卷积网络(GCNs)被广泛地应用于基于骨骼的人体行为识别。然而,目前的基于GCN的方法只关注关节点对之间的低阶关系,而忽略了潜在的关节点在关节点群中的高阶关系。同时,现有的方法忽略了空... 由于人体骨架是一个天然存在的拓扑结构,因此图卷积网络(GCNs)被广泛地应用于基于骨骼的人体行为识别。然而,目前的基于GCN的方法只关注关节点对之间的低阶关系,而忽略了潜在的关节点在关节点群中的高阶关系。同时,现有的方法忽略了空间拓扑随时间的动态变化。这些不足影响了模型的表现。为此,利用K-NN计算出相关性高的关节点构成超边,提出了超图构建方法和超边图卷积来动态地学习关节点间的高阶关系。此外,设计了一个从时间和通道角度细化的拓扑图来学习帧级的和通道级的关节点对之间的相关性。最后,开发了一个多角度拓扑细化的超图卷积网络(HyperMTR-GCN)用于骨骼行为识别,其在NTU RGB+D和NTU RGB+D 120数据集上具有显著优势。具体地,所提方法在NTU RGB+D的X-sub基准上比2s-AGCN提高了3.7%,在NTU RGB+D 120的X-sub基准上比2s-AGCN提高了5.7%。 展开更多
关键词 行为识别 图卷积网络 超图神经网络 骨架建模 拓扑细化
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部