期刊文献+
共找到98篇文章
< 1 2 5 >
每页显示 20 50 100
基于动态时空Transformer的城市蜂窝网络流量预测方法
1
作者 于江燕 王倩 +2 位作者 孟宪静 张瑞敏 耿蕾蕾 《计算机工程与应用》 北大核心 2025年第18期290-299,共10页
针对现有的城市蜂窝网络流量预测方法没有考虑到小区间空间相关性的动态性以及不同时间跨度下小区间空间相关性的多样性问题,提出基于动态时空Transformer的城市蜂窝网络流量预测模型(DSTTNet)。提出多尺度时间感知空间Transformer模块M... 针对现有的城市蜂窝网络流量预测方法没有考虑到小区间空间相关性的动态性以及不同时间跨度下小区间空间相关性的多样性问题,提出基于动态时空Transformer的城市蜂窝网络流量预测模型(DSTTNet)。提出多尺度时间感知空间Transformer模块MSTAST,通过分时间段建模小区间的空间相关性,实现小区间动态空间关系的捕获;通过引入多分支结构,在不同的分支上使用不同的时间段划分方式来捕获不同的空间相关性,从而提高空间相关性建模的准确性;基于MSTAST和时间Transformer模块构建时空序列建模模块来捕获城市蜂窝网络流量中的长时间依赖关系和动态空间依赖关系;还将MSTAST应用于特征融合模块,以提高模型对预测特征中远距离小区间全局空间关系的捕获能力。实验结果表明,在RMSE评价指标下,所提模型在SMS、Call、Internet三种网络流量数据集上分别提升了5.43%、4.30%、2.86%。 展开更多
关键词 蜂窝网络流量预测 时空数据挖掘 transformer 注意力机制 无线网络
在线阅读 下载PDF
基于时空Transformer的混合回报隐式Q学习人群导航
2
作者 周帅 符浩 刘伟 《计算机应用》 北大核心 2025年第11期3666-3673,共8页
在人群密集环境中,机器人执行人群导航任务时通常采用在线强化学习算法。然而,行人运动复杂多变的特性显著降低了在线强化学习的样本效率。针对这一问题,提出一种在离线强化学习(ORL)框架下的基于时空Transformer的混合回报隐式Q学习(ST... 在人群密集环境中,机器人执行人群导航任务时通常采用在线强化学习算法。然而,行人运动复杂多变的特性显著降低了在线强化学习的样本效率。针对这一问题,提出一种在离线强化学习(ORL)框架下的基于时空Transformer的混合回报隐式Q学习(STHRIQL)算法。首先,将蒙特卡洛(MC)回报机制融入隐式Q学习(IQL)算法中,旨在增强学习过程的收敛性;其次,进一步将时空Transformer模型整合至Actor-Critic中,以有效捕捉并解析离线人群导航数据集中机器人与行人之间高度动态且复杂的交互信息,从而优化算法的训练流程与效率;最后,通过仿真实验将所提算法与现有基于在线强化学习的人群导航算法进行对比,并根据评估机制进行定量与定性分析。实验结果显示,STHRIQL算法不仅在人群导航任务中展现出了优越的性能,而且相较于现有的在线人群导航算法,样本效率提升了30.5%~55.8%。STHRIQL算法可为提升机器人在复杂人群环境中的导航能力提供新的思路与解决方案。 展开更多
关键词 人群导航 深度强化学习 离线学习 神经网络 时空transformer
在线阅读 下载PDF
基于时空融合Transformer的航空发动机RUL预测
3
作者 王昱 杨晓庆 +1 位作者 李硕 张哲成 《振动与冲击》 北大核心 2025年第16期318-328,共11页
航空发动机数据呈现多变量、非线性和动态变化等复杂特征,且具有显著的时空关联性。大多数研究在分析数据时,往往局限于单一的多传感器尺度或时间尺度,且往往忽视数据间的长时依赖性,限制了其在航空发动机剩余使用寿命(remaining useful... 航空发动机数据呈现多变量、非线性和动态变化等复杂特征,且具有显著的时空关联性。大多数研究在分析数据时,往往局限于单一的多传感器尺度或时间尺度,且往往忽视数据间的长时依赖性,限制了其在航空发动机剩余使用寿命(remaining useful life,RUL)预测任务中的应用。为此,提出了一种时空融合Transformer网络模型。该模型在保留Transformer架构中的多头注意力机制和位置编码的优势以精准捕捉长时依赖特征的基础上,首先采用高效全连接网络替代原有的解码操作模块,匹配航空发动机RUL预测非线性回归问题属性的同时简化模型结构;然后,通过引入空间注意力机制模块,深入挖掘不同变量间的空间特征;最后,应用改进的赤池信息量准则对Transformer的重要超参数进行辨识,解决其超参数的选择难题。经C-MAPSS以及PHM08预测数据挑战赛两数据集的多组试验证实所提模型的有效性及其在预测精度方面的卓越表现。 展开更多
关键词 剩余使用寿命(RUL)预测 transformer神经网络 深度学习 赤池信息量准则 时空融合 空间注意力
在线阅读 下载PDF
融合Transformer和MSCNN双分支架构的工控网络入侵检测研究 被引量:10
4
作者 李井龙 刘胜全 +2 位作者 马宇航 陈洋洋 刘博 《东北师大学报(自然科学版)》 CAS 北大核心 2024年第3期70-78,共9页
针对现有的工控网络入侵检测方法中存在对工控流量的多空间特征和长距离时序特征的提取能力不足等问题,提出了一种融合Transformer和MSCNN双分支架构的工控网络入侵检测模型.该模型利用多尺度卷积(MSCNN)中多个不同大小卷积核,对工控流... 针对现有的工控网络入侵检测方法中存在对工控流量的多空间特征和长距离时序特征的提取能力不足等问题,提出了一种融合Transformer和MSCNN双分支架构的工控网络入侵检测模型.该模型利用多尺度卷积(MSCNN)中多个不同大小卷积核,对工控流量中多个空间特征进行抽取,扩大了对工控流量特征范围的学习.同时引入Transformer增强了模型对工控流量中长距离时序特征的提取能力,进一步提高了模型的性能.通过UNSW-NB15和NSL-KDD数据集进行了实验,结果表明:该模型与其他方法相比能够提取更加全面有效的特征,具有很好的检测性能和泛化能力. 展开更多
关键词 工控网络 入侵检测 空间特征 长距离时序特征 MSCNN transformer
在线阅读 下载PDF
基于CNN-Transformer结构的遥感影像变化检测 被引量:2
5
作者 潘梦洋 杨航 范祥晖 《液晶与显示》 CAS CSCD 北大核心 2024年第10期1361-1379,共19页
现代高分辨率遥感图像变化检测借助卷积神经网络(Convolutional Neural Network,CNN)取得了显著成果。然而,卷积操作的感受野限制导致在学习全局上下文和远程空间关系方面存在不足。虽然视觉Transformer能有效捕获远程特征的依赖性,但... 现代高分辨率遥感图像变化检测借助卷积神经网络(Convolutional Neural Network,CNN)取得了显著成果。然而,卷积操作的感受野限制导致在学习全局上下文和远程空间关系方面存在不足。虽然视觉Transformer能有效捕获远程特征的依赖性,但其对影像变化细节的处理不足,导致空间定位能力有限且计算效率低下。为解决上述问题,本文提出了一种基于空间空洞金字塔池化的跨层级联线性融合端到端编解码混合CNN-Transformer的变化检测模型,兼具视觉Transformer和CNN的优势。首先,利用孪生CNN网络提取图像特征,并借助空洞金字塔池化模块对特征进行精细处理,从而更精准地捕获图像的细节特征信息。其次,将提取的特征转化为视觉单词,并通过Transformer编码器进行建模,以获取丰富的上下文信息。这些信息随后被反馈至视觉空间,通过Transformer解码器对原始特征进行强化,提升特征的表达效果。接着,采用跨层级联的方式将CNN提取的特征与Transformer编解码的特征进行融合,利用上采样技术联系不同分辨率的特征图,实现位置信息与语义信息的融合。最后,通过差异增强模块生成包含丰富变化信息的差异特征图。在LEVIR、CDD、DSIFN和WHUCD 4个公开遥感数据集上的广泛实验验证了本文方法的有效性。与其他先进方法相比,本文模型的分类性能更出色,有效改善了变化检测中的欠分割、过分割及边缘粗糙等问题。 展开更多
关键词 遥感图像 变化检测 卷积神经网络 transformer 空间空洞金字塔池化
在线阅读 下载PDF
基于Transformer和关系图卷积网络的信息传播预测模型 被引量:1
6
作者 吕锡婷 赵敬华 +1 位作者 荣海迎 赵嘉乐 《计算机应用》 CSCD 北大核心 2024年第6期1760-1766,共7页
针对在信息传播动态演化中,结构特征和时序特征以及两者间的交互表达难以有效捕获的问题,提出一种基于Transformer和关系图卷积网络的信息传播预测模型(TRGCN)。首先,构建由社交关系图和传播级联图组合而成的异构图,使用关系图卷积网络(... 针对在信息传播动态演化中,结构特征和时序特征以及两者间的交互表达难以有效捕获的问题,提出一种基于Transformer和关系图卷积网络的信息传播预测模型(TRGCN)。首先,构建由社交关系图和传播级联图组合而成的异构图,使用关系图卷积网络(RGCN)提取图中各节点的结构特征;其次,使用双向长短期记忆(Bi-LSTM)网络对各节点的时间嵌入重新编码,引入时间衰减项以不同的权重赋予不同时间位置的节点,获得节点的时序特征;最后,将结构特征和时序特征输入Transformer进行融合,得到时空特征以预测信息传播。在Twitter、Douban和Memetracker这3个真实数据集上的实验结果表明,相较于对比实验中的最优模型,TRGCN的Hits@100指标分别提升3.18%,5.96%和3.34%,Map@100指标分别提升11.60%,19.72%和8.47%,验证了所提模型的有效性和合理性。 展开更多
关键词 信息传播预测 transformer 关系图卷积网络 双向长短期记忆网络 时空特征
在线阅读 下载PDF
基于空间变换网络和特征分布校准的小样本皮肤图像分类模型
7
作者 王静 刘嘉星 +2 位作者 宋婉莹 薛嘉兴 丁温欣 《计算机应用》 北大核心 2025年第8期2720-2726,共7页
基于深度学习的图像分类模型通常需要大量标记数据,然而,在医学领域的皮肤病变分类任务中,收集大量图像数据面临着诸多挑战。为了能准确分类小样本皮肤疾病,提出一种基于空间变换网络(STN)和特征分布校准的小样本分类模型。首先,将迁移... 基于深度学习的图像分类模型通常需要大量标记数据,然而,在医学领域的皮肤病变分类任务中,收集大量图像数据面临着诸多挑战。为了能准确分类小样本皮肤疾病,提出一种基于空间变换网络(STN)和特征分布校准的小样本分类模型。首先,将迁移学习和元学习相结合,以解决跨域迁移小样本存在的过拟合问题;其次,在预训练分类任务前插入旋转角度预测任务,以便模型更好地适应医学图像数据的高复杂度;再次,在对图像下采样后引入STN,以通过显式地对输入图像进行仿射变换,增强特征的提取和识别能力;最后,通过特征分布校准对新类特征进行约束,并引入最邻近质心算法进行分类决策,在简化算法流程的同时显著提升分类精度。在ISIC2018皮肤病变数据集上的实验结果表明,与当前主流小样本模型Meta-Baseline相比,在2-way和3-way分类任务中,所提模型的平均精度分别提高了11.80和10.82个百分点;与模型MetaMed相比,在2-way 3-shot和3-way 3-shot分类任务中,所提模型的分类精度分别提升了6.65和9.58个百分点。可见,所提模型有效提高了小样本皮肤疾病的分类精度,能够更好地辅助医生提高临床诊断精确度。 展开更多
关键词 小样本学习 图像分类 皮肤病变 空间变换网络 最邻近质心
在线阅读 下载PDF
改进YOLOv7的高效煤矿烟火检测算法
8
作者 刘春霞 张凯强 +2 位作者 潘理虎 龚大立 谢斌红 《计算机工程与设计》 北大核心 2025年第6期1832-1840,共9页
为解决煤矿烟火检测中速度缓慢和图像背景干扰问题,提出一种基于YOLOv7改进的检测算法。通过设计SlimNeck结构重构颈部网络实现模型轻量化;采用WIoUv3减轻低质量训练集的影响;在ELAN结构融入EMA模块,减少信息转换过程中的损失;引入具备... 为解决煤矿烟火检测中速度缓慢和图像背景干扰问题,提出一种基于YOLOv7改进的检测算法。通过设计SlimNeck结构重构颈部网络实现模型轻量化;采用WIoUv3减轻低质量训练集的影响;在ELAN结构融入EMA模块,减少信息转换过程中的损失;引入具备多种感知能力的动态检测头提升模型表现力。实验结果表明,改进后的模型mAP提升了3.2%,同时模型的参数量和计算量分别减少了0.59 MB和2.2 G。检测速度达到了18.1 ms,保证了高精度,满足实时监测的需求。 展开更多
关键词 目标检测 空间语义信息转换 注意力机制 边界框回归函数 动态检测头 煤矿烟火 轻量化网络
在线阅读 下载PDF
旅游生态系统发展空间关联网络与土地利用转型的权衡协同关系——以武陵山片区为例 被引量:1
9
作者 谭佳欣 王凯 《生态学报》 北大核心 2025年第4期1563-1574,共12页
研究旅游生态系统发展空间关联网络与土地利用转型的权衡协同关系,对于推动国土空间优化和旅游可持续发展具有重要意义。以武陵山片区为例,分析2000—2020年土地利用转型时空格局,综合运用引力模型和社会网络分析方法探究旅游生态系统... 研究旅游生态系统发展空间关联网络与土地利用转型的权衡协同关系,对于推动国土空间优化和旅游可持续发展具有重要意义。以武陵山片区为例,分析2000—2020年土地利用转型时空格局,综合运用引力模型和社会网络分析方法探究旅游生态系统发展空间关联网络的结构特征,通过Spearman秩相关系数和双变量局部空间自相关定量分析旅游生态系统发展空间关联网络与土地利用转型的权衡协同关系。结果表明:(1)武陵山片区旅游生态系统发展空间关联网络轴线呈现“东密西疏、北疏南密”的非均衡特征,武陵源-永定始终为强联系关系,武陵源、冷水江、鹤城、吉首和永定的度数中心度均值远高于其他地区。(2)综合土地利用动态度呈现“上升-下降-上升”的变化趋势,单一地类动态度大小排序为:建设用地>水域>草地>耕地>林地;林地和耕地相互转化是土地利用转型的主要表现形式。(3)综合土地利用动态度与旅游生态系统发展空间关联网络中心性(CSCN)之间存在协同关系;不同地类的动态度与CSCN的权衡协同关系具有阶段性和空间异质性特征。研究可为促进区域旅游生态系统和土地利用转型协同发展提供理论借鉴与实践参考。 展开更多
关键词 旅游生态系统发展 空间关联网络 土地利用转型 权衡协同 武陵山片区
在线阅读 下载PDF
基于新型图神经网络TI-GNN的青少年吸烟成瘾诊断
10
作者 王旭雯 喻大华 +6 位作者 薛婷 李晓娇 麦珍珍 董芳 马宇欣 王娟 袁凯 《生物化学与生物物理进展》 北大核心 2025年第9期2393-2405,共13页
目的烟草相关疾病是全球可预防的主要健康问题之一,也是导致过早死亡的主要原因之一。吸烟成瘾作为一种慢性大脑疾病,已广泛被认定为影响大脑结构和功能的关键因素。然而,目前有效的诊断方法仍存在挑战。为了更好地理解吸烟成瘾的神经机... 目的烟草相关疾病是全球可预防的主要健康问题之一,也是导致过早死亡的主要原因之一。吸烟成瘾作为一种慢性大脑疾病,已广泛被认定为影响大脑结构和功能的关键因素。然而,目前有效的诊断方法仍存在挑战。为了更好地理解吸烟成瘾的神经机制,并提高诊断的准确性,本研究提出了一种新型的图神经网络框架——TI-GNN,旨在通过功能磁共振成像(fMRI)数据揭示吸烟成瘾与大脑连接异常之间的关系。方法本研究基于fMRI数据,利用图神经网络(GNN)对吸烟成瘾的功能连接模式进行建模。TI-GNN通过Transformer提取全局交互信息和空间注意机制有效获取脑区之间的联系,以提高模型的诊断性能。此外,模型内置因果解释模块,以深入挖掘大脑不同区域的因果关系,从而增强模型的可解释性。结果实验结果表明,TI-GNN模型在吸烟成瘾数据集上的分类效果显著优于现有的最佳基线方法。特别地,TI-GNN在提高区分效果、准确识别吸烟成瘾与健康对照之间的差异方面表现出色,准确率、F1分数和马修斯系数分别达到0.91、0.91和0.83。同时揭示了杏仁核、前扣带皮层等关键脑区的异常连接模式,与临床研究结果一致。结论TI-GNN框架为吸烟成瘾的客观诊断提供了高效工具,其揭示的脑网络异常与因果关联机制,深化了对成瘾病理机制的理解,为靶向干预策略和个性化治疗奠定了重要理论基础。 展开更多
关键词 空间注意力 transformer 图神经网络 功能磁共振成像 分类 青少年 吸烟成瘾
在线阅读 下载PDF
基于上下文全局空间图的轨迹用户链接
11
作者 侯萱 梁志贞 +2 位作者 张磊 刘佰龙 张雪飞 《计算机工程与科学》 北大核心 2025年第2期336-348,共13页
轨迹用户链接TUL是指判定目标轨迹所属用户,已成为一项重要的轨迹数据挖掘任务。尽管基于深度学习的模型在TUL研究中取得显著进展,但现有模型主要关注单个轨迹点的基本时空特征,忽略全局位置空间相关性、上下文信息和用户的多周期移动规... 轨迹用户链接TUL是指判定目标轨迹所属用户,已成为一项重要的轨迹数据挖掘任务。尽管基于深度学习的模型在TUL研究中取得显著进展,但现有模型主要关注单个轨迹点的基本时空特征,忽略全局位置空间相关性、上下文信息和用户的多周期移动规律,导致TUL结果准确度不高。提出了一种基于上下文全局空间图的轨迹用户链接模型CGSG-TUL。在位置嵌入方面,根据历史轨迹构建上下文全局空间图,融入所有位置的邻近关系和类别等上下文信息,对位置的空间相关性有效建模。在时间编码方面,根据不同时间尺度对签入的时间戳进行编码,捕获用户的多周期移动规律。在Foursquare-NYK和Foursquare-TKY这两个真实数据集上的实验结果表明,CGSG-TUL性能比目前最好的基准模型GNNTUL的ACC@1和Marco-F 1分别平均提高2.50%和2.72%。 展开更多
关键词 轨迹用户链接 上下文全局空间图 多周期移动规律 图神经网络 transformer
在线阅读 下载PDF
基于多重注意力机制和空间变换网络的换衣行人重识别
12
作者 李鹏辉 王洪元 +1 位作者 张继 陈海琴 《南京大学学报(自然科学版)》 北大核心 2025年第2期202-213,共12页
换衣行人重识别(Cloth-Changing Person Re-Identification,CC Re-ID)技术旨在监控视频或图像中针对同一行人在长时间跨度中进行识别,现有方法主要利用多模态信息来建模体型以减轻服装的影响,但其泛化能力差且需大量额外工作,而且,仅利... 换衣行人重识别(Cloth-Changing Person Re-Identification,CC Re-ID)技术旨在监控视频或图像中针对同一行人在长时间跨度中进行识别,现有方法主要利用多模态信息来建模体型以减轻服装的影响,但其泛化能力差且需大量额外工作,而且,仅利用RGB图像的方法无法充分提取与服装无关的信息.针对以上问题,提出一种基于多重注意力机制和空间变换网络的换衣行人重识别方法,通过在主干网络中融入CBAM(Convolutional Block Attention Module)和STN(Spatial Transformer Network,STN)模块,分别提升网络对于不同通道和空间位置重要性的感知能力以及对于不同角度图像的适应能力.为了进一步提高网络对行人细粒度特征的提取能力,融入三重注意力机制来关注不同维度上的信息,引入一个自适应特征提取模块来学习特征中不同区域的重要性.此外,还采用服装分类损失和服装对抗损失等多种损失函数来引导模型学习与服装无关的信息.在四个换衣行人重识别数据集(LTCC,PRCC,VC-Clothes和DeepChange)上进行了大量实验,实验结果表明,提出的方法的Rank-1和mAP指标优于一些先进的换衣行人重识别方法. 展开更多
关键词 换衣行人重识别 基于服装的对抗性损失 三重注意力机制 空间变换网络 自适应特征提取
在线阅读 下载PDF
基于关键点的列车螺栓松动状态检测算法研究
13
作者 刘艾莎 王勇 +2 位作者 李金龙 高晓蓉 马金刚 《现代电子技术》 北大核心 2025年第14期178-186,共9页
针对真实列车场景中,螺栓松动检测易受螺栓种类多样、拍摄环境复杂等影响的问题,提出一种基于关键点的列车螺栓松动状态检测算法。将深度学习中的关键点检测技术与拓扑学相结合,利用孪生网络判断前后历史螺栓的几何六边形信息差,从而判... 针对真实列车场景中,螺栓松动检测易受螺栓种类多样、拍摄环境复杂等影响的问题,提出一种基于关键点的列车螺栓松动状态检测算法。将深度学习中的关键点检测技术与拓扑学相结合,利用孪生网络判断前后历史螺栓的几何六边形信息差,从而判断螺栓松动。首先利用YOLOv9识别并定位螺栓,构建螺栓关键点数据集和螺栓松动分类数据集;其次,为增强检测模型对畸变、倾斜等异常螺栓图像的自动矫正能力,并解决特征图在深层网络传递中的信息丢失问题,对ResNet-18模型进行改进,集成了空间变换网络(STN)模块;最后,将检测得到的螺栓角点拓扑为一个连通六边形结构,并将前后信息输入至孪生网络进行松动分类。测试结果表明,利用改进后的ResNet-18模型判断螺栓松动状态的精确率为99.3%,召回率为99.6%,较原模型有显著提升。所提算法能够有效判断螺栓的松动状态,可为螺栓松动故障诊断提供新的解决方案和技术参考。 展开更多
关键词 螺栓松动检测 关键点检测技术 YOLOv9 ResNet-18 图像处理 拓扑学 空间变换网络
在线阅读 下载PDF
基于迭代压缩U型网络的煤颗粒分割与粒度分析方法 被引量:2
14
作者 程德强 张瑞 +4 位作者 谢同喜 刘敬敬 郑丽娟 寇旗旗 江鹤 《煤炭学报》 北大核心 2025年第2期1362-1375,共14页
煤中甲烷气体传播与煤粒的粒度分布特征紧密相连,进而影响煤炭的安全开采和利用。随着数字图像处理技术的不断发展,基于数字图像分割的煤粒形态检测方法已成为获取煤颗粒粒度分布特征的主流方法。在数字图像分割过程中,全局信息和边缘... 煤中甲烷气体传播与煤粒的粒度分布特征紧密相连,进而影响煤炭的安全开采和利用。随着数字图像处理技术的不断发展,基于数字图像分割的煤粒形态检测方法已成为获取煤颗粒粒度分布特征的主流方法。在数字图像分割过程中,全局信息和边缘细节起着关键作用,直接影响分割结果的准确性。基于卷积神经网络架构的U型网络过于注重局部信息,忽视了全局信息的重要性,容易导致过分割现象。而基于Transformer的网络利用多头自注意力机制有效地建模了全局信息,但却没有充分利用边缘细节特征,导致煤颗粒漏分割问题。为了解决上述问题,本研究提出了迭代压缩U型网络(Iterative Squeeze UNet,ISUNet)用于煤颗粒粒度分析。ISUNet模型引入了压缩激励空洞空间金字塔池化模块和基于Transformer的多路迭代编码器。压缩激励空洞空间金字塔池化模块通过增强不同尺度特征的通道信息和全局上下文信息,解决了煤粒过分割问题。编码器中的多头自注意力模块将ResNet50的卷积特征作为其中一个输入,通过点乘自注意力机制不断强化重要的边缘细节特征,解决了煤粒漏分割问题。与5种经典图像分割模型和4种目前主流的分割模型相比,ISUNet表现出色。相较于经典的分割模型TransUNet来说,平均交并比提高了6.6%,准确率提高了0.3%,召回率提高了7.0%,相较于目前主流的图像分割大模型Segment Anything来说,平均交并比提高了4.6%,准确率提高了0.2%,召回率提高了4.9%。在煤粒粒度测量方面,准确率达到了97.49%。这些试验结果充分证实了ISUNet在煤粒粒度分析中的有效性和优越性。 展开更多
关键词 煤粒粒度分析 图像分割 基于transformer的多路迭代编码器 压缩激励空洞空间金字塔池化 U型网络
在线阅读 下载PDF
基于双域边缘融合网络的RGB显著性目标检测
15
作者 林怡翔 李海明 陈黎飞 《计算机工程与设计》 北大核心 2025年第11期3266-3274,共9页
为解决现有RGB显著性目标检测模型在处理复杂背景和噪声干扰时,存在边缘特征对噪声鲁棒性不足以及难以准确区分真实边缘的问题。提出一种基于双域边缘融合网络的RGB显著性目标检测模型。该模型通过结合空间域的拉普拉斯金字塔技术与频... 为解决现有RGB显著性目标检测模型在处理复杂背景和噪声干扰时,存在边缘特征对噪声鲁棒性不足以及难以准确区分真实边缘的问题。提出一种基于双域边缘融合网络的RGB显著性目标检测模型。该模型通过结合空间域的拉普拉斯金字塔技术与频率域的傅里叶变换和自适应掩膜技术,强化RGB图像多尺度和全局边缘信息的提取,并提升其识别颜色信息时的抗噪能力。新模型还通过像素重排提高特征图的空间分辨率,以保留更多的语义信息与细节特征。在5个基准数据集上的实验结果表明,与现有的8种RGB显著性目标检测模型相比,该模型在3个评价指标上取得较好的结果。 展开更多
关键词 显著性目标检测 双域边缘融合网络 空间域 频率域 拉普拉斯金字塔 傅里叶变换 像素聚合 特征融合
在线阅读 下载PDF
基于改进Yolov8n的珊瑚白化图像目标检测
16
作者 韩云涛 刘宇鹏 +2 位作者 胡跃明 孙宝鹏 杨佳琪 《智能系统学报》 北大核心 2025年第5期1148-1157,共10页
针对海洋环境中珊瑚白化图像特征模糊、背景复杂多变导致的检测精度不足问题,在Yolov8n的基础上,提出了一种基于改进Yolov8n的针对珊瑚白化图像目标检测的Yolov8_CSHC算法。首先,利用防冗余结构紧凑倒置块(compact inverted block,CIB)... 针对海洋环境中珊瑚白化图像特征模糊、背景复杂多变导致的检测精度不足问题,在Yolov8n的基础上,提出了一种基于改进Yolov8n的针对珊瑚白化图像目标检测的Yolov8_CSHC算法。首先,利用防冗余结构紧凑倒置块(compact inverted block,CIB)改进C2f(concatenated feature fusion)模块,减少模型参数量以提高检测速度。其次,在特征融合网络中引入了基于局部注意力增强空间尺度聚合特征的空间金字塔池化网络,可以增强模型对局部细节的感知能力。最后,在特征融合过程中引入级联分组注意力机制,通过将输入特征分割处理,级联输出的方式提高了注意力的多样性和计算效率,使模型可以快速聚焦特征区域。后续引入混合注意力变换器,主要用于单图像超分辨率重建,进一步增强小目标的语义信息和全局感知能力。实验结果表明,在Marjan balance Dataset上,Yolov8_CSHC相较于Yolov8n算法,GFLOPS降低了12%,mAP@0.5-0.95提高了3.6百分点。该算法可以有效地完成海洋珊瑚白化状况的目标检测任务。 展开更多
关键词 Yolov8_CSHC 珊瑚白化检测 空间金字塔池化网络 级联分组注意力模块 CIB_C2f模块 混合注意力变换器 Marjan balance Dataset
在线阅读 下载PDF
基于时空Transformer的社交网络信息传播预测 被引量:9
17
作者 范伟 刘勇 《计算机研究与发展》 EI CSCD 北大核心 2022年第8期1757-1769,共13页
随着社交网络的日益普及和广泛应用,信息传播预测逐渐成为了社交网络分析领域的一个热点研究问题.之前大部分研究要么只利用信息传播序列,要么只利用用户之间的社交网络来进行预测,难以对信息传播过程的复杂性进行有效建模.此外,常用于... 随着社交网络的日益普及和广泛应用,信息传播预测逐渐成为了社交网络分析领域的一个热点研究问题.之前大部分研究要么只利用信息传播序列,要么只利用用户之间的社交网络来进行预测,难以对信息传播过程的复杂性进行有效建模.此外,常用于信息传播预测的循环神经网络(recurrent neural network,RNN)及其变体难以有效捕获信息之间的相关性.为解决上述问题,提出了一个新的基于时空Transformer的社交网络信息传播预测模型STT.该模型首先构建由社交网络图和动态传播图组成的异构图并使用图卷积网络(graph convolutional network,GCN)来学习用户的结构特征;然后将用户的时序特征和结构特征放入到Transformer中进行融合来获取时空特征;为有效融合用户的时序特征和结构特征,提出了一种新的残差融合方式来替代Transformer中原有的残差连接;最后利用Transformer来进行信息传播预测.真实数据集上的大量实验验证了模型STT的有效性. 展开更多
关键词 社交网络 信息传播预测 transformer 图卷积网络 时空特征
在线阅读 下载PDF
融合Transformer和VGG网络的高光谱图像分类 被引量:3
18
作者 张明慧 周浩 王先旺 《传感器与微系统》 CSCD 北大核心 2023年第12期142-145,150,共5页
在高光谱图像(HSI)光谱数据中,相邻波段间信息的相关性对光谱特征近似的不同地物的分析具有重要意义。然而在传统卷积神经网络(CNN)的HSI光谱数据处理方法中,所提取的特征忽略了不同波段间信息的关联性。提出了一种融合Transformer和VG... 在高光谱图像(HSI)光谱数据中,相邻波段间信息的相关性对光谱特征近似的不同地物的分析具有重要意义。然而在传统卷积神经网络(CNN)的HSI光谱数据处理方法中,所提取的特征忽略了不同波段间信息的关联性。提出了一种融合Transformer和VGG网络的高光谱图像分类方法(SST_Like)。采用3D卷积核的VGG网络提取空间光谱特征,基于多头自注意力(MSA)机制的Transformer网络提取连续光谱间信息,形成空谱联合特征,最终通过多层感知机(MLP)完成地物分类任务。本文提出的SST_Like网络模型在3个HSI开放数据集上的实验结果表明,与传统基于CNN的HSI分类算法相比,可以提取更加深层的、判别性的特征,具有较高的分类性能。 展开更多
关键词 VGG网络 高光谱图像分类 transformer 空谱联合特征提取
在线阅读 下载PDF
基于STN与异构卷积滤波器的肝硬化识别 被引量:3
19
作者 张欢 赵希梅 《计算机工程》 CAS CSCD 北大核心 2021年第5期301-307,315,共8页
卷积神经网络因缺乏空间不变性造成分类精度不高,且由于复杂度过高导致分类效率较低。提出一种利用空间变换网络和异构卷积滤波器的SH_ImAlexNet网络,应用于肝硬化样本识别。改进卷积神经网络AlexNet的结构和参数以满足肝硬化样本尺度要... 卷积神经网络因缺乏空间不变性造成分类精度不高,且由于复杂度过高导致分类效率较低。提出一种利用空间变换网络和异构卷积滤波器的SH_ImAlexNet网络,应用于肝硬化样本识别。改进卷积神经网络AlexNet的结构和参数以满足肝硬化样本尺度要求,引入空间变换网络层增强特征提取能力与空间不变性,采用异构卷积滤波器替换部分卷积核降低复杂度并提升鲁棒性。实验结果表明,该网络的分类效果较AlexNet、VGG等传统网络更优,在小样本数据集和大样本数据集上的识别率分别达到98.28%和95.67%,空间复杂度和时间复杂度更低且运行效率更高。 展开更多
关键词 空间变换网络 异构卷积滤波器 AlexNet模型 卷积神经网络 肝硬化识别
在线阅读 下载PDF
基于改进Transformer的结构化图像超分辨网络 被引量:4
20
作者 吕鑫栋 李娇 +3 位作者 邓真楠 冯浩 崔欣桐 邓红霞 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第5期865-874,910,共11页
针对现有的结构化图像超分辨重建算法大多只能解决特定单一种类的结构化图像超分辨问题,提出一种基于改进Transformer的结构化图像超分辨率网络(TransSRNet).该网络利用Transformer的自注意力机制在空间序列中挖掘大范围的全局信息.采... 针对现有的结构化图像超分辨重建算法大多只能解决特定单一种类的结构化图像超分辨问题,提出一种基于改进Transformer的结构化图像超分辨率网络(TransSRNet).该网络利用Transformer的自注意力机制在空间序列中挖掘大范围的全局信息.采用沙漏块结构搭建空间注意力单元,关注低分辨率空间和高分辨率空间在局部区域的映射关系,提取图像映射过程中的结构化信息,使用高效通道注意力模块对自注意力模块和空间注意力模块做特征融合.在高度结构化CelebA、Helen、TCGA-ESCA和TCGA-COAD数据集上的模型评估结果表明,相较于主流超分辨算法,TransSRNet整体性能表现更好.在放大因子为8时,人脸数据集和医学峰值信噪比(PRNR)可以分别达到28.726、26.392 dB,结构相似性(SSIM)可以分别达到0.844、0.881. 展开更多
关键词 卷积神经网络 transformer 自注意力 空间注意力 图像超分辨率重建
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部