A novel 3D metal-organic framework(MOF)[Pr_(2)(L)_(3)(H_(2)O)5·H_(2)O]n(Pr-1),(H_(2)L=4,4'-oxybis(benzoic acid))with a rare structure of broken layer net,was constructed under the condition of solvothermal sy...A novel 3D metal-organic framework(MOF)[Pr_(2)(L)_(3)(H_(2)O)5·H_(2)O]n(Pr-1),(H_(2)L=4,4'-oxybis(benzoic acid))with a rare structure of broken layer net,was constructed under the condition of solvothermal synthesis.The struc-ture and crystal net were analyzed and characterized.This rod net of Pr-1 is new to both RCSR and ToposPro data-bases,and is named as rn-12 as suggested.Due to the luminescent properties of H_(2)L and Pr(Ⅲ),the solid-state fluo-rescence property and sensing performance(solvents and metal ions)of Pr-1 were investigated.The sensing experi-ments indicated that Pr-1 could act as a fluorescence sensor to detect Cd^(2+)ions with good sensitivity.In addition,antibacterial activities show that Pr-1 exhibited stronger antibacterial activity against Escherichia coli(E.coli),Staphylococcus aureus(S.aureus),and Bacillus subtilis(B.subtilis)compared to synthetic materials.展开更多
This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based ...This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based on the dictionary D.We establish that matrices adhering to the block D-NSP_(q)condition are both necessary and sufficient for the exact recovery of block sparse signals via l_(2)/l_(q)-synthesis.Additionally,this condition is essential for the stable recovery of signals that are block-compressible with respect to D.This D-NSP_(q)property is identified as the first complete condition for successful signal recovery using l_(2)/l_(q)-synthesis.Furthermore,we assess the theoretical efficacy of the l2/lq-synthesis method under conditions of measurement noise.展开更多
A coordination polymer{[Cd(H_(2)dpa)(bpy)]·3H_(2)O}_(n)(Cd-CP)was designed and hydrothermal synthesized based on 4-(2,4-dicarboxyphenoxy)phthalic acid(H_(4)dpa),2,2'-bipyridine(bpy)and Cd(NO_(3))_(2)·4H_...A coordination polymer{[Cd(H_(2)dpa)(bpy)]·3H_(2)O}_(n)(Cd-CP)was designed and hydrothermal synthesized based on 4-(2,4-dicarboxyphenoxy)phthalic acid(H_(4)dpa),2,2'-bipyridine(bpy)and Cd(NO_(3))_(2)·4H_(2)O.The structure was characterized by single-crystal X-ray diffraction,powder X-ray diffraction,elemental analysis,and infrared spectroscopy.Cd-CP belongs to the monoclinic crystal system with the P2_1/c space group and performs in a 1D double-chain structure.The adjacent double chains further form a 3D supramolecular network structure through hydrogen bonding.Thermogravimetric analysis shows that Cd-CP has good thermal stability.Fluorescence analysis showed that Cd-CP had good choosing selectively and was sensitive to metal ions(Fe^(3+)and Zn^(2+)),2,4,6-trinitrophenylhydrazine(TRI),and pyrimethanil(Pth).Interestingly,when Cd-CP was used for fluorescence detection of metal ions,it was found to have a fluorescence quenching effect on Fe^(3+)but had an obvious enhancement effect on Zn^(2+).Therefore,we designed an“on-off-on”logic gate.In addition,the mechanism of fluorescence sensing has been deeply explored.CCDC:2258625.展开更多
Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investig...Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investigate the integrated scheduling of communication,sensing,and control for UAV-aided FSO communication systems.Initially,a sensing-control model is established via the control theory.Moreover,an FSO communication channel model is established by considering the effects of atmospheric loss,atmospheric turbulence,geometrical loss,and angle-of-arrival fluctuation.Then,the relationship between the motion control of the UAV and radial displacement is obtained to link the control aspect and communication aspect.Assuming that the base station has instantaneous channel state information(CSI)or statistical CSI,the thresholds of the sensing-control pattern activation are designed,respectively.Finally,an integrated scheduling scheme for performing communication,sensing,and control is proposed.Numerical results indicate that,compared with conventional time-triggered scheme,the proposed integrated scheduling scheme obtains comparable communication and control performance,but reduces the sensing consumed power by 52.46%.展开更多
During the storage of composite propellants, the migration of plasticizers and other unbonded additives at the interfaces of liner adhesives has garnered significant attention in understanding liner failure mechanisms...During the storage of composite propellants, the migration of plasticizers and other unbonded additives at the interfaces of liner adhesives has garnered significant attention in understanding liner failure mechanisms, aging processes, and safety performance. However, there is currently no non-destructive and quantitative detection method for migration of plasticizers in propellant liner. In this study, we developed a HTPB sensing liner by incorporating conductive fillers-namely carbon black(CB), carbon nanotubes(CNTs), and graphene nanoplatelets(GNP)-into the HTPB matrix. The synergistic interaction between CNTs and GNP facilitates the formation of a tunneling conductive network that imparts electrical conductivity to the HTPB liner. To elucidate the functional relationship between conductivity and nitroglycerin(NG) migration, we applied the HTPB sensing liner onto double base propellant surfaces and measured both the conductivity of the sensing layer and NG migration during a 71°C accelerated aging experiment. The results shows that when CNTs/GNP content reaches 3wt%, there is an exponential correlation between conductivity and NG migration with a fitting degree of 0.9652;the average response sensitivity of ΔR/R0 relative to NG migration is calculated as 41.69, with an average deviation of merely5.67% between NG migrations derived from conductivity fittings compared to those obtained via TGA testing results. Overall, this sensing liner exhibits excellent capabilities for detecting NG migration nondestructively and quantitatively while offering a novel approach for assessing interfacial component migrations as well as debonding defects in propellants-a promising avenue for future self-monitoring strategies regarding propellant integrity.展开更多
An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption l...An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.展开更多
Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster...Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster field retrieve remote sensing data.To improve this problem,this paper proposes an ontology and rule based retrieval(ORR)method to retrieve disaster remote sensing data,and this method introduces ontology technology to express earthquake disaster and remote sensing knowledge,on this basis,and realizes the task suitability reasoning of earthquake disaster remote sensing data,mining the semantic relationship between remote sensing metadata and disasters.The prototype system is built according to the ORR method,which is compared with the traditional method,using the ORR method to retrieve disaster remote sensing data can reduce the knowledge requirements of data users in the retrieval process and improve data retrieval efficiency.展开更多
Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spec...Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spectrum sensing,which is subject to the complexity of processing the modulated outputs.In this case,a multipath NYFR architecture with a step-sampling rate for the different paths is proposed.The different numbers of digital channels for each path are designed based on the Chinese remainder theorem(CRT).Then,the detectable frequency range is divided into multiple frequency grids,and the Nyquist zone(NZ) of the input can be obtained by sensing these grids.Thus,high-precision parameter estimation is performed by utilizing the NYFR characteristics.Compared with the existing methods,the scheme proposed in this paper overcomes the challenge of NZ estimation,information damage,many computations,low accuracy,and high false alarm probability.Comparative simulation experiments verify the effectiveness of the proposed architecture in this paper.展开更多
In the field of satellite imagery, remote sensing image captioning(RSIC) is a hot topic with the challenge of overfitting and difficulty of image and text alignment. To address these issues, this paper proposes a visi...In the field of satellite imagery, remote sensing image captioning(RSIC) is a hot topic with the challenge of overfitting and difficulty of image and text alignment. To address these issues, this paper proposes a vision-language aligning paradigm for RSIC to jointly represent vision and language. First, a new RSIC dataset DIOR-Captions is built for augmenting object detection in optical remote(DIOR) sensing images dataset with manually annotated Chinese and English contents. Second, a Vision-Language aligning model with Cross-modal Attention(VLCA) is presented to generate accurate and abundant bilingual descriptions for remote sensing images. Third, a crossmodal learning network is introduced to address the problem of visual-lingual alignment. Notably, VLCA is also applied to end-toend Chinese captions generation by using the pre-training language model of Chinese. The experiments are carried out with various baselines to validate VLCA on the proposed dataset. The results demonstrate that the proposed algorithm is more descriptive and informative than existing algorithms in producing captions.展开更多
Signal reconstruction is a significantly important theoretical issue for compressed sensing.Considering the situation of signal reconstruction with unknown sparsity,the conventional signal reconstruction algorithms us...Signal reconstruction is a significantly important theoretical issue for compressed sensing.Considering the situation of signal reconstruction with unknown sparsity,the conventional signal reconstruction algorithms usually perform low accuracy.In this work,a sparsity adaptive signal reconstruction algorithm using sensing dictionary is proposed to achieve a lower reconstruction error.The sparsity estimation method is combined with the construction of the support set based on sensing dictionary.Using the adaptive sparsity method,an iterative signal reconstruction algorithm is proposed.The sufficient conditions for the exact signal reconstruction of the algorithm also is proved by theory.According to a series of simulations,the results show that the proposed method has higher precision compared with other state-of-the-art signal reconstruction algorithms especially in a high compression ratio scenarios.展开更多
The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval a...The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval algorithm of component temperature has been matured gradually,its application in the studies on urban thermal environment is restricted due to the difficulty in acquiring urban-scale multi-angle thermal infrared data.Therefore,based on the existing multi-source multi-band remote sensing data,access to appropriate urban-scale component temperature is an urgent issue to be solved in current studies on urban thermal infrared remote sensing.Then,a retrieval algorithm of urban component temperature by multi-source multi-band remote sensing data on the basis of MODIS and Landsat TM images was proposed with expectations achieved in this work,which was finally validated by the experiment on urban images of Changsha,China.The results show that:1) Mean temperatures of impervious surface components and vegetation components are the maximum and minimum,respectively,which are in accordance with the distribution laws of actual surface temperature; 2) High-accuracy retrieval results are obtained in vegetation component temperature.Moreover,through a contrast between retrieval results and measured data,it is found that the retrieval temperature of impervious surface component has the maximum deviation from measured temperature and its deviation is greater than 1 ℃,while the deviation in vegetation component temperature is relatively low at 0.5 ℃.展开更多
The spontaneous burning has been lasting for thousands of years in the coal fields in the north of China. It spreads from the west (Tianshan coal field) to the east (Huolinhe coal field). Its E-W extension is up to 37...The spontaneous burning has been lasting for thousands of years in the coal fields in the north of China. It spreads from the west (Tianshan coal field) to the east (Huolinhe coal field). Its E-W extension is up to 3750km, concentrating in N35°toN45°, its vertical depth up to 260m, and the surface temprature locally up to 270℃. Annually, it burns out 0, 250-300 million tones of coal, causing economic loss equivalent to 2-3 billion R.M.B. Yuan.It destroies coal resources and causes hazards in coal mines. In order to locate the extent and the direction in coal burning areas, the remote sensing technique has heen used and has produced an obvious benefit.展开更多
通过构建嗜水气单胞菌AH-1 Quorum Sensing(QS)2个关键调节基因ahyI,ahyR的突变菌株,来系统分析嗜水气单胞菌AH-1Ⅲ型分泌系统基因,揭示它们由QS系统调控.在ahyI突变菌中,TTSS分泌效应因子(effector)aexT量显著提高.通过构建LacZ-TTSS...通过构建嗜水气单胞菌AH-1 Quorum Sensing(QS)2个关键调节基因ahyI,ahyR的突变菌株,来系统分析嗜水气单胞菌AH-1Ⅲ型分泌系统基因,揭示它们由QS系统调控.在ahyI突变菌中,TTSS分泌效应因子(effector)aexT量显著提高.通过构建LacZ-TTSS基因启动子融合表达,进一步表明QS系统负调控编码TTSS组分的基因.展开更多
High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compress...High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compressed sensing based algorithm for high resolution range imaging and a new minimized ll-norm criterion for motion compensation are proposed. The random hopping of the transmitted carrier frequency is converted to restricted isometry property of the observing matrix. Then practical problems of imaging model solution and signal parameter design are resolved. Due to the particularity of the proposed algorithm, two new indicators of range profile, i.e., average signal to sidelobe ratio and local similarity, are defined. The chamber measured data are adopted to testify the validity of the proposed algorithm, and simulations are performed to analyze the precision of velocity measurement as well as the performance of motion compensation. The simulation results show that the proposed algorithm has such advantages as high precision velocity measurement, low sidelobe and short period imaging, which ensure robust imaging for moving targets when signal-to-noise ratio is above 10 dB.展开更多
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven...A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.展开更多
The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target refle...The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless.展开更多
How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classif...How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.展开更多
Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-...Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-scale decomposition of the area of thin cloud cover on remote sensing images. Through enhancing coefficients of high frequency and suppressing coefficients of low frequency, the thin cloud is removed. For thick cloud cover, if the areas of thick cloud cover on multi-source or multi-temporal remote sensing images do not overlap, the multi-output support vector regression learning method is used to remove this kind of thick clouds. If the thick cloud cover areas overlap, by using the multi-output learning of the surrounding areas to predict the surface features of the overlapped thick cloud cover areas, this kind of thick cloud is removed. Experimental results show that the proposed cloud removal method can effectively solve the problems of the cloud overlapping and radiation difference among multi-source images. The cloud removal image is clear and smooth.展开更多
A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decom...A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome.展开更多
文摘A novel 3D metal-organic framework(MOF)[Pr_(2)(L)_(3)(H_(2)O)5·H_(2)O]n(Pr-1),(H_(2)L=4,4'-oxybis(benzoic acid))with a rare structure of broken layer net,was constructed under the condition of solvothermal synthesis.The struc-ture and crystal net were analyzed and characterized.This rod net of Pr-1 is new to both RCSR and ToposPro data-bases,and is named as rn-12 as suggested.Due to the luminescent properties of H_(2)L and Pr(Ⅲ),the solid-state fluo-rescence property and sensing performance(solvents and metal ions)of Pr-1 were investigated.The sensing experi-ments indicated that Pr-1 could act as a fluorescence sensor to detect Cd^(2+)ions with good sensitivity.In addition,antibacterial activities show that Pr-1 exhibited stronger antibacterial activity against Escherichia coli(E.coli),Staphylococcus aureus(S.aureus),and Bacillus subtilis(B.subtilis)compared to synthetic materials.
基金Supported by The Featured Innovation Projects of the General University of Guangdong Province(2023KTSCX096)The Special Projects in Key Areas of Guangdong Province(ZDZX1088)Research Team Project of Guangdong University of Education(2024KYCXTD018)。
文摘This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based on the dictionary D.We establish that matrices adhering to the block D-NSP_(q)condition are both necessary and sufficient for the exact recovery of block sparse signals via l_(2)/l_(q)-synthesis.Additionally,this condition is essential for the stable recovery of signals that are block-compressible with respect to D.This D-NSP_(q)property is identified as the first complete condition for successful signal recovery using l_(2)/l_(q)-synthesis.Furthermore,we assess the theoretical efficacy of the l2/lq-synthesis method under conditions of measurement noise.
文摘A coordination polymer{[Cd(H_(2)dpa)(bpy)]·3H_(2)O}_(n)(Cd-CP)was designed and hydrothermal synthesized based on 4-(2,4-dicarboxyphenoxy)phthalic acid(H_(4)dpa),2,2'-bipyridine(bpy)and Cd(NO_(3))_(2)·4H_(2)O.The structure was characterized by single-crystal X-ray diffraction,powder X-ray diffraction,elemental analysis,and infrared spectroscopy.Cd-CP belongs to the monoclinic crystal system with the P2_1/c space group and performs in a 1D double-chain structure.The adjacent double chains further form a 3D supramolecular network structure through hydrogen bonding.Thermogravimetric analysis shows that Cd-CP has good thermal stability.Fluorescence analysis showed that Cd-CP had good choosing selectively and was sensitive to metal ions(Fe^(3+)and Zn^(2+)),2,4,6-trinitrophenylhydrazine(TRI),and pyrimethanil(Pth).Interestingly,when Cd-CP was used for fluorescence detection of metal ions,it was found to have a fluorescence quenching effect on Fe^(3+)but had an obvious enhancement effect on Zn^(2+).Therefore,we designed an“on-off-on”logic gate.In addition,the mechanism of fluorescence sensing has been deeply explored.CCDC:2258625.
文摘Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investigate the integrated scheduling of communication,sensing,and control for UAV-aided FSO communication systems.Initially,a sensing-control model is established via the control theory.Moreover,an FSO communication channel model is established by considering the effects of atmospheric loss,atmospheric turbulence,geometrical loss,and angle-of-arrival fluctuation.Then,the relationship between the motion control of the UAV and radial displacement is obtained to link the control aspect and communication aspect.Assuming that the base station has instantaneous channel state information(CSI)or statistical CSI,the thresholds of the sensing-control pattern activation are designed,respectively.Finally,an integrated scheduling scheme for performing communication,sensing,and control is proposed.Numerical results indicate that,compared with conventional time-triggered scheme,the proposed integrated scheduling scheme obtains comparable communication and control performance,but reduces the sensing consumed power by 52.46%.
基金funded by Zhijian Laboratory Open Fund,Rocket Force University of Engineering(Grant No.2023-ZJSYS-KF01-03).
文摘During the storage of composite propellants, the migration of plasticizers and other unbonded additives at the interfaces of liner adhesives has garnered significant attention in understanding liner failure mechanisms, aging processes, and safety performance. However, there is currently no non-destructive and quantitative detection method for migration of plasticizers in propellant liner. In this study, we developed a HTPB sensing liner by incorporating conductive fillers-namely carbon black(CB), carbon nanotubes(CNTs), and graphene nanoplatelets(GNP)-into the HTPB matrix. The synergistic interaction between CNTs and GNP facilitates the formation of a tunneling conductive network that imparts electrical conductivity to the HTPB liner. To elucidate the functional relationship between conductivity and nitroglycerin(NG) migration, we applied the HTPB sensing liner onto double base propellant surfaces and measured both the conductivity of the sensing layer and NG migration during a 71°C accelerated aging experiment. The results shows that when CNTs/GNP content reaches 3wt%, there is an exponential correlation between conductivity and NG migration with a fitting degree of 0.9652;the average response sensitivity of ΔR/R0 relative to NG migration is calculated as 41.69, with an average deviation of merely5.67% between NG migrations derived from conductivity fittings compared to those obtained via TGA testing results. Overall, this sensing liner exhibits excellent capabilities for detecting NG migration nondestructively and quantitatively while offering a novel approach for assessing interfacial component migrations as well as debonding defects in propellants-a promising avenue for future self-monitoring strategies regarding propellant integrity.
文摘An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.
基金supported by the National Key Research and Development Program of China(2020YFC1512304).
文摘Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster field retrieve remote sensing data.To improve this problem,this paper proposes an ontology and rule based retrieval(ORR)method to retrieve disaster remote sensing data,and this method introduces ontology technology to express earthquake disaster and remote sensing knowledge,on this basis,and realizes the task suitability reasoning of earthquake disaster remote sensing data,mining the semantic relationship between remote sensing metadata and disasters.The prototype system is built according to the ORR method,which is compared with the traditional method,using the ORR method to retrieve disaster remote sensing data can reduce the knowledge requirements of data users in the retrieval process and improve data retrieval efficiency.
基金supported by the Key Projects of the 2022 National Defense Science and Technology Foundation Strengthening Plan 173 (Grant No.2022-173ZD-010)the Equipment PreResearch Foundation of The State Key Laboratory (Grant No.6142101200204)。
文摘Wideband spectrum sensing with a high-speed analog-digital converter(ADC) presents a challenge for practical systems.The Nyquist folding receiver(NYFR) is a promising scheme for achieving cost-effective real-time spectrum sensing,which is subject to the complexity of processing the modulated outputs.In this case,a multipath NYFR architecture with a step-sampling rate for the different paths is proposed.The different numbers of digital channels for each path are designed based on the Chinese remainder theorem(CRT).Then,the detectable frequency range is divided into multiple frequency grids,and the Nyquist zone(NZ) of the input can be obtained by sensing these grids.Thus,high-precision parameter estimation is performed by utilizing the NYFR characteristics.Compared with the existing methods,the scheme proposed in this paper overcomes the challenge of NZ estimation,information damage,many computations,low accuracy,and high false alarm probability.Comparative simulation experiments verify the effectiveness of the proposed architecture in this paper.
基金supported by the National Natural Science Foundation of China (61702528,61806212)。
文摘In the field of satellite imagery, remote sensing image captioning(RSIC) is a hot topic with the challenge of overfitting and difficulty of image and text alignment. To address these issues, this paper proposes a vision-language aligning paradigm for RSIC to jointly represent vision and language. First, a new RSIC dataset DIOR-Captions is built for augmenting object detection in optical remote(DIOR) sensing images dataset with manually annotated Chinese and English contents. Second, a Vision-Language aligning model with Cross-modal Attention(VLCA) is presented to generate accurate and abundant bilingual descriptions for remote sensing images. Third, a crossmodal learning network is introduced to address the problem of visual-lingual alignment. Notably, VLCA is also applied to end-toend Chinese captions generation by using the pre-training language model of Chinese. The experiments are carried out with various baselines to validate VLCA on the proposed dataset. The results demonstrate that the proposed algorithm is more descriptive and informative than existing algorithms in producing captions.
基金supported by the National Natural Science Foundation of China(61773202,71874081)the Special Financial Grant from China Postdoctoral Science Foundation(2017T100366)+2 种基金the Key Laboratory of Avionics System Integrated Technology for National Defense Science and Technology,China Institute of Avionics Radio Electronics(6142505180407)the Open Fund of CAAC Key laboratory of General Aviation Operation,Civil Aviation Management Institute of China(CAMICKFJJ-2019-04)the Innovation Project of the Civil Aviation Administration of China(EAB19001)。
文摘Signal reconstruction is a significantly important theoretical issue for compressed sensing.Considering the situation of signal reconstruction with unknown sparsity,the conventional signal reconstruction algorithms usually perform low accuracy.In this work,a sparsity adaptive signal reconstruction algorithm using sensing dictionary is proposed to achieve a lower reconstruction error.The sparsity estimation method is combined with the construction of the support set based on sensing dictionary.Using the adaptive sparsity method,an iterative signal reconstruction algorithm is proposed.The sufficient conditions for the exact signal reconstruction of the algorithm also is proved by theory.According to a series of simulations,the results show that the proposed method has higher precision compared with other state-of-the-art signal reconstruction algorithms especially in a high compression ratio scenarios.
基金Projects(41171326,40771198)supported by the National Natural Science Foundation of ChinaProject(08JJ6023)supported by the Natural Science Foundation of Hunan Province,China
文摘The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval algorithm of component temperature has been matured gradually,its application in the studies on urban thermal environment is restricted due to the difficulty in acquiring urban-scale multi-angle thermal infrared data.Therefore,based on the existing multi-source multi-band remote sensing data,access to appropriate urban-scale component temperature is an urgent issue to be solved in current studies on urban thermal infrared remote sensing.Then,a retrieval algorithm of urban component temperature by multi-source multi-band remote sensing data on the basis of MODIS and Landsat TM images was proposed with expectations achieved in this work,which was finally validated by the experiment on urban images of Changsha,China.The results show that:1) Mean temperatures of impervious surface components and vegetation components are the maximum and minimum,respectively,which are in accordance with the distribution laws of actual surface temperature; 2) High-accuracy retrieval results are obtained in vegetation component temperature.Moreover,through a contrast between retrieval results and measured data,it is found that the retrieval temperature of impervious surface component has the maximum deviation from measured temperature and its deviation is greater than 1 ℃,while the deviation in vegetation component temperature is relatively low at 0.5 ℃.
文摘The spontaneous burning has been lasting for thousands of years in the coal fields in the north of China. It spreads from the west (Tianshan coal field) to the east (Huolinhe coal field). Its E-W extension is up to 3750km, concentrating in N35°toN45°, its vertical depth up to 260m, and the surface temprature locally up to 270℃. Annually, it burns out 0, 250-300 million tones of coal, causing economic loss equivalent to 2-3 billion R.M.B. Yuan.It destroies coal resources and causes hazards in coal mines. In order to locate the extent and the direction in coal burning areas, the remote sensing technique has heen used and has produced an obvious benefit.
文摘通过构建嗜水气单胞菌AH-1 Quorum Sensing(QS)2个关键调节基因ahyI,ahyR的突变菌株,来系统分析嗜水气单胞菌AH-1Ⅲ型分泌系统基因,揭示它们由QS系统调控.在ahyI突变菌中,TTSS分泌效应因子(effector)aexT量显著提高.通过构建LacZ-TTSS基因启动子融合表达,进一步表明QS系统负调控编码TTSS组分的基因.
基金Project(61171133) supported by the National Natural Science Foundation of ChinaProject(CX2011B019) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(B110404) supported by Innovation Foundation for Outstanding Postgraduates of National University of Defense Technology,China
文摘High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compressed sensing based algorithm for high resolution range imaging and a new minimized ll-norm criterion for motion compensation are proposed. The random hopping of the transmitted carrier frequency is converted to restricted isometry property of the observing matrix. Then practical problems of imaging model solution and signal parameter design are resolved. Due to the particularity of the proposed algorithm, two new indicators of range profile, i.e., average signal to sidelobe ratio and local similarity, are defined. The chamber measured data are adopted to testify the validity of the proposed algorithm, and simulations are performed to analyze the precision of velocity measurement as well as the performance of motion compensation. The simulation results show that the proposed algorithm has such advantages as high precision velocity measurement, low sidelobe and short period imaging, which ensure robust imaging for moving targets when signal-to-noise ratio is above 10 dB.
文摘A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.
基金supported by the Prominent Youth Fund of the National Natural Science Foundation of China (61025006)
文摘The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless.
基金supported by the National Natural Science Foundation of China(U1435220)
文摘How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.
基金supported by the National Natural Science Foundation of China(6107116361071164+5 种基金6147119161501233)the Fundamental Research Funds for the Central Universities(NP2014504)the Aeronautical Science Foundation(20152052026)the Electronic & Information School of Yangtze University Innovation Foundation(2016-DXCX-05)the Priority Academic Program Development of Jiangsu Higher Education Institutions
基金supported by the National Natural Science Foundation of China(61172127)the Natural Science Foundation of Anhui Province(1408085MF121)
文摘Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-scale decomposition of the area of thin cloud cover on remote sensing images. Through enhancing coefficients of high frequency and suppressing coefficients of low frequency, the thin cloud is removed. For thick cloud cover, if the areas of thick cloud cover on multi-source or multi-temporal remote sensing images do not overlap, the multi-output support vector regression learning method is used to remove this kind of thick clouds. If the thick cloud cover areas overlap, by using the multi-output learning of the surrounding areas to predict the surface features of the overlapped thick cloud cover areas, this kind of thick cloud is removed. Experimental results show that the proposed cloud removal method can effectively solve the problems of the cloud overlapping and radiation difference among multi-source images. The cloud removal image is clear and smooth.
文摘A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome.