期刊文献+
共找到190篇文章
< 1 2 10 >
每页显示 20 50 100
KMDW和ISVDD方法在钻头磨损状态识别中的应用
1
作者 郝旺身 娄本池 +4 位作者 董辛旻 王林恒 朱春辉 陈世金 王亚坤 《重庆理工大学学报(自然科学)》 北大核心 2025年第7期179-186,共8页
为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVD... 为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVDD模型进行故障分类,对混叠样本采用K近邻隶属度值进行识别,并采用改进的蝴蝶优化算法(IBOA)优化SVDD模型参数。在标准数据集上验证所提方法的优越性,结果表明:加入K近邻隶属度值可使F值和准确率分别提升6.36%和6.59%;KMDW相比K均值聚类方法的ARI值和NMI值分别提升10.01%和10.75%,能够达到更好的聚类效果;经蝴蝶优化算法改进后模型识别精度进一步提高。将所提方法应用于钻头磨损状态的识别,识别准确率达到92.83%,证明其具有较好的识别精度和通用性。 展开更多
关键词 svdd K均值密度权重聚类 蝴蝶优化算法 K近邻算法 钻头磨损状态识别
在线阅读 下载PDF
基于SVDD和SVM的高压调门油动机状态监测系统研究
2
作者 马立强 姜安琦 +2 位作者 姜万录 郑云飞 吴凤和 《振动与冲击》 北大核心 2025年第12期238-248,共11页
在高压调门油动机的运行监控中,由于正常状态的样本远多于故障样本,故障数据稀缺且采集相对困难,此外还存在故障发生的不确定性,传统的监测方法难以有效应用。对此,提出了一种基于支持向量数据描述(support vector data description,SV... 在高压调门油动机的运行监控中,由于正常状态的样本远多于故障样本,故障数据稀缺且采集相对困难,此外还存在故障发生的不确定性,传统的监测方法难以有效应用。对此,提出了一种基于支持向量数据描述(support vector data description,SVDD)异常检测和支持向量机(support vector machine,SVM)故障诊断的高压调门油动机状态监测系统。首先,从原始数据中提取时域(time domain,T)、频域(frequency domain,F)和时频域小波包子带能量(wavelet packet subband energy,W)特征,并通过特征融合及归一化的方式形成新的多维融合特征向量TFW。随后,采用卷积神经网络(convolutional neural network,CNN)对TFW进行深层次挖掘,生成更具表现力的特征TFWCNN,以此作为SVDD和SVM模型的输入。搭建了高压调门油动机故障模拟试验台,用以采集数据并验证该方法的有效性。研究结果表明:在三个具有不同阀位开度的高压调门油动机动态数据集上,SVDD异常检测的F1分数分别达到0.9991、0.9978和0.9760;SVM故障诊断的F1分数分别为0.9988、0.9950和0.9867;不仅说明该方法在高压调门油动机的状态监测中表现出的优异性能,同时也说明深度TFWCNN特征在高压调门油动机状态监测中的有效性和准确性;还为类似的汽轮机状态监测诊断系统提供了一种有效的技术方案。 展开更多
关键词 高压调门油动机 支持向量数据描述(svdd)异常检测 支持向量机(SVM)故障诊断 状态监测系统
在线阅读 下载PDF
基于CNN与SVDD融合的螺栓图像检测方法研究 被引量:5
3
作者 徐志玲 孔明 刘子豪 《中国测试》 CAS 北大核心 2024年第1期46-53,共8页
在传统紧固件质量检测行业中,工人负责对产品合格与否进行质量评估,然而人工检测效率低下、易疲劳、误检率高成为制约紧固件行业智能化的关键问题,针对此问题,该文提出一种卷积神经网络(CNN)与支持向量数据描述法(SVDD)融合的螺栓异常... 在传统紧固件质量检测行业中,工人负责对产品合格与否进行质量评估,然而人工检测效率低下、易疲劳、误检率高成为制约紧固件行业智能化的关键问题,针对此问题,该文提出一种卷积神经网络(CNN)与支持向量数据描述法(SVDD)融合的螺栓异常检测模型。首先,图像获取装置通过在全方位设置多个摄像头捕捉螺栓的全表面图像信息,图像输入卷积神经网络逐层提取螺栓图像特征,获取螺栓的中高层特征;然后,SVDD作为异常检测分类器进行螺栓缺陷的识别,针对在线获取螺栓缺陷样本的不足导致的样本不平衡问题,提出采用卷积自编码器建立预训练过程,将学习到的权重迁移到深度SVDD模型上作为初始权重。实验结果表明,相比于其他螺栓检测算法,所提融合模型在自主构造的螺栓侧面图像集、头部图像集和底部图像螺栓集上均可取得较优的识别结果,而且所提算法的时间和空间复杂度控制在一定范围内,具有较好的应用价值和市场推广前景。 展开更多
关键词 螺栓 缺陷检测 卷积神经网络 异常检测 svdd
在线阅读 下载PDF
基于MFCC和MDE-SVDD的滚动轴承音频信号异常检测方法 被引量:8
4
作者 高原 邓艾东 +2 位作者 范永胜 梁志宏 傅行军 《动力工程学报》 CAS CSCD 北大核心 2024年第2期277-283,共7页
针对传统振动传感器安装不易,而声信号分析易受环境噪声干扰的问题,提出一种基于梅尔倒谱系数(MFCC)和马氏距离加权改进支持向量数据描述(MDE-SVDD)的音频信号异常检测方法,用于滚动轴承运行状态监测。该方法从轴承运行声信号中提取MFC... 针对传统振动传感器安装不易,而声信号分析易受环境噪声干扰的问题,提出一种基于梅尔倒谱系数(MFCC)和马氏距离加权改进支持向量数据描述(MDE-SVDD)的音频信号异常检测方法,用于滚动轴承运行状态监测。该方法从轴承运行声信号中提取MFCC作为特征向量,进而使用马氏距离加权改进SVDD,以增强对噪声样本的抗干扰性,从而提高算法的检测精度,然后在实验音频信号中添加多种强度的高斯白噪声以模拟现场噪声环境,并将所提方法的测试结果与传统SVDD等异常检测方法进行比较。结果表明:在低信噪比(-5 dB)场景下,MDE-SVDD的异常检测平均准确率达到91.99%,相较于传统SVDD提升了7.73百分比。 展开更多
关键词 滚动轴承 声纹识别 梅尔倒谱系数 支持向量数据描述 异常检测
在线阅读 下载PDF
基于模糊SVDD的电子装备状态评估模型研究 被引量:8
5
作者 杨森 孟晨 王成 《计算机工程与设计》 CSCD 北大核心 2013年第2期676-680,共5页
为有效解决电子装备的状态评估问题,提出了一种将模糊理论和SVDD算法相结合的电子装备状态评估模型。首先,采用模糊理论对电子装备健康状态进行了描述,将普通意义上的状态表述形式转化为了模糊特征描述;然后,采用正常状态样本建立了基... 为有效解决电子装备的状态评估问题,提出了一种将模糊理论和SVDD算法相结合的电子装备状态评估模型。首先,采用模糊理论对电子装备健康状态进行了描述,将普通意义上的状态表述形式转化为了模糊特征描述;然后,采用正常状态样本建立了基于模糊SVDD的电子装备状态评估模型,并以健康度为评估指标,对装备退化状态样本进行了状态评估;最后,以某电子装备滤波电路为例进行了验证,仿真结果表明,该模型用于电子装备状态评估是行之有效的。 展开更多
关键词 电子装备 模糊理论 svdd算法 模糊svdd模型 状态评估
在线阅读 下载PDF
稀疏性SVDD方法在故障检测中的应用研究 被引量:3
6
作者 王国柱 刘建昌 李元 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期761-764,768,共5页
在支持向量数据描述(SVDD)方法的基础上,通过研究原始正常数据分布在高维映射空间内的稀疏特性,选取前k个高维分布边缘的数据点进行SVDD建模,用于解决SVDD方法处理大样本数据的缺陷,以及建模与过程监视时间长的问题.经过理论推导和仿真... 在支持向量数据描述(SVDD)方法的基础上,通过研究原始正常数据分布在高维映射空间内的稀疏特性,选取前k个高维分布边缘的数据点进行SVDD建模,用于解决SVDD方法处理大样本数据的缺陷,以及建模与过程监视时间长的问题.经过理论推导和仿真分析,验证了稀疏性SVDD建模方法可以有效地提高建模以及过程检测速度;对于大样本数据可以利用筛选后的小样本进行建模,解决了SVDD方法不能很好地处理大样本数据分类的问题;同时,此方法不影响故障检测的精度.在TE过程中的应用验证了该方法的有效性. 展开更多
关键词 稀疏性 svdd 稀疏性svdd 故障检测
在线阅读 下载PDF
基于SVDD与VGG的纽扣表面缺陷检测 被引量:2
7
作者 樊鑫江 佟强 +2 位作者 杨大利 侯凌燕 梁旭 《计算机工程与设计》 北大核心 2024年第3期918-924,共7页
为解决纽扣表面缺陷检测中人工效率低下,且无需对纽扣表面瑕疵进行分类的问题,提出一种基于DEEP SVDD与改进VGG16的纽扣表面缺陷检测模型。在VGG16中增加BN层加快网络收敛;为提升网络特征提取能力引入SE注意力模块;使用全局平局池化替... 为解决纽扣表面缺陷检测中人工效率低下,且无需对纽扣表面瑕疵进行分类的问题,提出一种基于DEEP SVDD与改进VGG16的纽扣表面缺陷检测模型。在VGG16中增加BN层加快网络收敛;为提升网络特征提取能力引入SE注意力模块;使用全局平局池化替代全连接层,减少模型参数量,使模型更加健壮。实验结果表明,改进后的模型在DEEP SVDD中的两种方法软边界及一类方法的AUC值分别提升7.7%、5.9%,均高于96%,单张检测时间仅4.5 ms,模型性能满足实际要求。 展开更多
关键词 纽扣表面检测 深度支持向量数据描述 VGG16网络模型 注意力机制 全局平均池化层 批量归一化 深度学习
在线阅读 下载PDF
高光谱图像全局异常检测RFS-SVDD算法 被引量:10
8
作者 谌德荣 宫久路 +1 位作者 何光林 曹旭平 《宇航学报》 EI CAS CSCD 北大核心 2010年第1期228-232,共5页
针对SVDD用于高光谱图像全局异常检测时存在虚警率高的问题,提出RFS-SVDD算法。RFS-SVDD将空间相邻且光谱相似的像元分为同一区域,根据区域大小将图像在空间上分成潜在异常区域与背景区域,用背景区域中所有子区域的平均光谱RFS作为SVDD... 针对SVDD用于高光谱图像全局异常检测时存在虚警率高的问题,提出RFS-SVDD算法。RFS-SVDD将空间相邻且光谱相似的像元分为同一区域,根据区域大小将图像在空间上分成潜在异常区域与背景区域,用背景区域中所有子区域的平均光谱RFS作为SVDD训练样本求取支持向量。RFS是每个子区域中像元光谱的统计结果且不包含奇异像元,可以避免奇异像元光谱和图像随机噪声对背景建模的影响。对HYMAP和AVIRIS图像数据的仿真结果表明:RFS-SVDD算法能抑制异常目标像元光谱和图像随机噪声对背景建模的干扰,降低SVDD用于高光谱图像全局异常检测的虚警率。 展开更多
关键词 高光谱图像 全局异常检测 svdd 空间聚类
在线阅读 下载PDF
基于Deep SVDD的通信信号异常检测方法 被引量:21
9
作者 康颖 赵治华 +2 位作者 吴灏 李亚星 孟进 《系统工程与电子技术》 EI CSCD 北大核心 2022年第7期2319-2328,共10页
针对复杂电子对抗场景中的非理想信道环境,该文提出了一种基于深度学习的异常检测(anomaly detection,AD)方法。首先,分析了利用时频同相/正交(in-phase/quadrature,I/Q)采样数据进行AD的可行性;然后,设计了深度学习网络架构,并提出基... 针对复杂电子对抗场景中的非理想信道环境,该文提出了一种基于深度学习的异常检测(anomaly detection,AD)方法。首先,分析了利用时频同相/正交(in-phase/quadrature,I/Q)采样数据进行AD的可行性;然后,设计了深度学习网络架构,并提出基于深度支持向量描述(deep support vector data description,Deep SVDD)和调制识别的AD方法。仿真及实验结果表明:相比于经典的单分类检测算法,该方法检测性能和实时性明显提升,且在非理想信道环境下表现鲁棒。该方法已在某型号项目原理样机上得到验证,具有很高应用价值。 展开更多
关键词 异常检测 Deep svdd 调制识别 干扰预警
在线阅读 下载PDF
基于LTSA的FS-SVDD方法及其在化工过程监控中的应用 被引量:15
10
作者 张少捷 王振雷 钱锋 《化工学报》 EI CAS CSCD 北大核心 2010年第8期1894-1900,共7页
基于支持向量数据描述(SVDD)方法的非高斯过程监控和故障诊断具有众多优点。然而在对SVDD离线建模时需要在整个训练样本集上操作,对大样本集计算量相当大,也不利于在线操作时模型的更新。对此提出一种基于特征样本的SVDD(FS-SVDD),采用... 基于支持向量数据描述(SVDD)方法的非高斯过程监控和故障诊断具有众多优点。然而在对SVDD离线建模时需要在整个训练样本集上操作,对大样本集计算量相当大,也不利于在线操作时模型的更新。对此提出一种基于特征样本的SVDD(FS-SVDD),采用特征样本提取方法用少数几个特征样本代替原始数据集进行训练,显著降低了建模复杂度。同时,针对传统的线性降维算法如主成分分析(PCA)存在的提取过程数据非线性结构能力不足的缺点,首先用局部切空间排列(LTSA)方法提取出低维子流形,进行有效的维数约减;接着在这个低维子流形上执行SVDD算法;最后,利用相应统计指标进行过程监控。在TE过程上的仿真表明上述方法的有效性。 展开更多
关键词 svdd 特征样本 LTSA 过程监控
在线阅读 下载PDF
基于迭代多模型ICA-SVDD的间歇过程故障在线监测 被引量:12
11
作者 王培良 葛志强 宋执环 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第7期1347-1352,共6页
采用多向主元分析的间歇过程故障监测方法需假设过程数据严格服从高斯分布,而且要对监测批次的测量未知值进行预测,这在一定程度上限制了其应用范围。为此通过建立迭代的多模型序列,不仅有效地解决了测量未知值的预测问题,而且考虑了各... 采用多向主元分析的间歇过程故障监测方法需假设过程数据严格服从高斯分布,而且要对监测批次的测量未知值进行预测,这在一定程度上限制了其应用范围。为此通过建立迭代的多模型序列,不仅有效地解决了测量未知值的预测问题,而且考虑了各个间歇过程时间片之间的关联信息。同时,利用独立成分分析方法提取出过程的非高斯信息,通过引入支持向量数据描述方法对独立成分进行进一步建模,实现非高斯特性下的间歇过程故障在线监测。通过一个实际的半导体制造过程的实验研究,表明提出的新方法可以更有效地处理间歇过程数据信息。 展开更多
关键词 MPCA 非高斯 迭代多模型 ICA—svdd 故障在线监测
在线阅读 下载PDF
基于推广能力测度的多类SVDD模式识别方法 被引量:20
12
作者 朱孝开 杨德贵 《电子学报》 EI CAS CSCD 北大核心 2009年第3期464-469,共6页
经典的基于距离测度的SVDD(Support Vector Domain Description)方法在解决两类(多类)识别问题时具有误判率较高、识别率低于普通二类SVC分类器等缺点.本文在分析其原因的基础上,提出了一种更能反映样本与类别本质关系的推广能力测度,... 经典的基于距离测度的SVDD(Support Vector Domain Description)方法在解决两类(多类)识别问题时具有误判率较高、识别率低于普通二类SVC分类器等缺点.本文在分析其原因的基础上,提出了一种更能反映样本与类别本质关系的推广能力测度,并由此提出了具有多层结构的多类SVDD模式识别方法.对实测雷达一维距离像数据的测试表明,该方法在保留了经典SVDD识别器算法复杂程度低、扩充性强、对训练样本数据规模上要求低等优点的同时,有效地降低了误判率,识别率已接近甚至达到二类SVC的水平. 展开更多
关键词 模式识别 svdd 多层结构 多分类算法
在线阅读 下载PDF
基于快速SVDD的无线传感器网络Outlier检测 被引量:8
13
作者 谢迎新 陈祥光 +2 位作者 余向明 岳彬 郭静 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第1期46-51,共6页
Outlier是基于无线传感器网络的数据收集应用中常见的数据故障类型,严重影响数据质量。本文提出一种基于快速SVDD的无线传感器网络Outlier检测方法,其基本思想是:首先利用快速SVDD算法获得包含正常样本的最小球形边界,然后通过该边界判... Outlier是基于无线传感器网络的数据收集应用中常见的数据故障类型,严重影响数据质量。本文提出一种基于快速SVDD的无线传感器网络Outlier检测方法,其基本思想是:首先利用快速SVDD算法获得包含正常样本的最小球形边界,然后通过该边界判断未知样本的类别,本法采用训练集约减策略和基于二阶逼近的SMO算法来加速SVDD的训练。基于合成数据和真实数据的仿真实验表明,该方法在确保分类精度的同时,运行速度快,内存开销小,适用于资源有限的无线传感器网络。 展开更多
关键词 无线传感器网络 Outlier检测 svdd 训练集约简 SMO算法
在线阅读 下载PDF
基于最大分类间隔SVDD算法的辐射源个体确认 被引量:4
14
作者 骆振兴 楼才义 +1 位作者 陈仕川 李少伟 《电子与信息学报》 EI CSCD 北大核心 2011年第9期2268-2272,共5页
通信辐射源个体确认技术是实现通信辐射源个体识别的关键技术之一。该文研究了基于支持向量数据描述(SVDD)的通信辐射源个体确认算法。针对传统SVDD算法在正类训练样本不完备的条件下对正类测试样本接受率较低的不足,提出带反类训练的... 通信辐射源个体确认技术是实现通信辐射源个体识别的关键技术之一。该文研究了基于支持向量数据描述(SVDD)的通信辐射源个体确认算法。针对传统SVDD算法在正类训练样本不完备的条件下对正类测试样本接受率较低的不足,提出带反类训练的最大分类间隔SVDD算法(MCM-SVDD)。MCM-SVDD在保证最小化超球体积的同时,使正类训练样本与反类训练样本距离超球表面的间隔最大化,从而提高了对正类测试样本正确接受的泛化能力。基于20台实际通信辐射源样本的实验表明,相对于SVDD,SVDD-neg和SVM,MCM-SVDD具有更高的平均确认率。 展开更多
关键词 无线通信 辐射源个体确认 支持向量数据描述 最大分类间隔svdd 辐射源指纹
在线阅读 下载PDF
一种新的不平衡数据v-NSVDD多分类算法 被引量:3
15
作者 刘小平 徐桂云 +1 位作者 任世锦 杨茂云 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期150-158,共9页
分析了多类支持向量数据描述(support vector data description,SVDD)算法存在的问题,提出一种新的不平衡数据v-NSVDD多分类算法.该方法借鉴了v-SVM方法以及带有负类的SVDD的思想,并基于不同类别样本间隔最大原理,较好地克服噪声和在野... 分析了多类支持向量数据描述(support vector data description,SVDD)算法存在的问题,提出一种新的不平衡数据v-NSVDD多分类算法.该方法借鉴了v-SVM方法以及带有负类的SVDD的思想,并基于不同类别样本间隔最大原理,较好地克服噪声和在野点的影响,提高了分类模型的泛化性能;通过样本加权的方法解决了不平衡类别样本预测精度低的问题,并在理论上给出了根据类别样本数量设置样本加权系数的方法.针对实际应用存在大量复杂、非线性分类数据,通过核方法把上述线性分类算法推广到非线性数据分类情形.由于现有的多分类器无法实现拒判,而且每个分类器的核函数参数不同,导致数据点与各个超球中心距离的计算结果与实际距离不相符,影响了数据判决结果的准确性和可靠性.针对上述问题,给出基于相对距离和K-NN规则相结合的多分类方法,提高了分类结果的准确性和可靠性.使用Benchmark数据集进行仿真实验,结果表明本算法能够获得较低的分类误差,能够有效处理样本不平衡问题. 展开更多
关键词 支持向量数据描述(svdd) 样本类别不平衡 多分类 拒判 超球软边界
在线阅读 下载PDF
基于带野值的SVDD的高光谱图像异常检测 被引量:3
16
作者 蒲晓丰 雷武虎 +1 位作者 汤俊杰 黄涛 《光电工程》 CAS CSCD 北大核心 2010年第12期83-87,共5页
基于支持向量数据描述(SVDD)的高光谱图像异常检测算法常常会因为背景样本中混入异常像元(野值)而导致检测概率下降。针对此问题,提出一种基于带野值的支持向量描述的检测算法,引入原点和少量已检测出来的异常像元作为异常样本,以改善... 基于支持向量数据描述(SVDD)的高光谱图像异常检测算法常常会因为背景样本中混入异常像元(野值)而导致检测概率下降。针对此问题,提出一种基于带野值的支持向量描述的检测算法,引入原点和少量已检测出来的异常像元作为异常样本,以改善算法对异常和背景数据的描述能力;同时为抑制错误样本的影响,将异常和背景样本偏离背景样本均值的距离映射作为各样本的加权系数。结果表明,新算法在低虚警概率下较之SVDD模型有更高的检测概率。利用真实数据进行实验证明了算法的有效性。 展开更多
关键词 异常检测 支持向量数据描述(svdd) 加权 高光谱图像
在线阅读 下载PDF
基于PCA-SVDD方法的钻头异常钻进识别 被引量:5
17
作者 刘刚 刘闯 +3 位作者 夏向阳 裴重潋 蔡鹏 赵少伟 《振动与冲击》 EI CSCD 北大核心 2015年第13期158-162,共5页
为了快速识别钻头异常钻进情况,达到实时监测丛式井防碰需求,根据钻头振动信号的幅值归一化频数统计特征,提出一种基于PCA-SVDD的钻头异常钻进识别模型。提取钻头正常钻进信号的每一帧数据的归一化频数特征,该特征与波形的真实幅值大小... 为了快速识别钻头异常钻进情况,达到实时监测丛式井防碰需求,根据钻头振动信号的幅值归一化频数统计特征,提出一种基于PCA-SVDD的钻头异常钻进识别模型。提取钻头正常钻进信号的每一帧数据的归一化频数特征,该特征与波形的真实幅值大小无关,适合不同工作情况,将提取的特征应用PCA方法降维处理得到钻头正常钻进的特征向量作为训练样本,建立基于PCA-SVDD的钻头异常钻进诊断模型。通过现场数据检验,证明该方法可以有效、快速地识别钻头异常钻进情况。 展开更多
关键词 钻头 异常钻进 特征提取 PCA svdd
在线阅读 下载PDF
基于模拟退火的SVDD特征提取和参数选择 被引量:6
18
作者 邢红杰 赵浩鑫 《计算机科学》 CSCD 北大核心 2013年第1期302-305,共4页
支持向量数据描述(Support Vector Data Description,SVDD)被认为是用于异常检测的典型方法。众所周之,参数的设置和特征的品质是影响SVDD性能的两个关键点。将SVDD的特征提取和参数选择问题结合在一起,提出了一种基于模拟退火的SVDD特... 支持向量数据描述(Support Vector Data Description,SVDD)被认为是用于异常检测的典型方法。众所周之,参数的设置和特征的品质是影响SVDD性能的两个关键点。将SVDD的特征提取和参数选择问题结合在一起,提出了一种基于模拟退火的SVDD特征提取和参数选择方法(SA-SVDD)。在模拟退火的过程中,自动选择最优核参数、折衷参数以及抽取特征的维数。在UCI基准数据集上的实验结果表明,与传统的参数选择方法相比,SA-SVDD取得了更优的性能。 展开更多
关键词 特征提取 模拟退火 参数选择 svdd 异常检测
在线阅读 下载PDF
动态SVDD算法及其应用 被引量:4
19
作者 彭敏晶 肖健华 《计算机科学》 CSCD 北大核心 2009年第3期156-157,183,共3页
针对当前SVDD算法由于过大的优化规模导致检测计算时间过长的问题,提出了动态SVDD算法。通过分析在进行检测工作时新加入检测对象对正域边界的影响,提出:采用核方法形成的边界可近似替代折线所形成的边界。这样,加入新检测对象后,新的... 针对当前SVDD算法由于过大的优化规模导致检测计算时间过长的问题,提出了动态SVDD算法。通过分析在进行检测工作时新加入检测对象对正域边界的影响,提出:采用核方法形成的边界可近似替代折线所形成的边界。这样,加入新检测对象后,新的边界就只与新的样本点和之前的边界有关,从而可以大大减小优化规模,提高检测的效率。 展开更多
关键词 svdd 边界 支持向量 核方法 优化规模
在线阅读 下载PDF
一种新的超球SVDD增量学习方法 被引量:2
20
作者 段修生 曹健 +1 位作者 孙世宇 张泽建 《计算机应用与软件》 CSCD 2015年第2期163-166,共4页
在基于支持向量数据描述(SVDD)的故障诊断中,往往随着故障数据的不断增加而不断地进行再训练以调整诊断模型,浪费了大量时间。为了解决这一问题,提出一种新的SVDD增量学习算法。该方法在深入分析训练结果与数据样本的关系,多次利用KKT条... 在基于支持向量数据描述(SVDD)的故障诊断中,往往随着故障数据的不断增加而不断地进行再训练以调整诊断模型,浪费了大量时间。为了解决这一问题,提出一种新的SVDD增量学习算法。该方法在深入分析训练结果与数据样本的关系,多次利用KKT条件,对样本进行筛选,最终选择出影响最终结果的少量训练样本。通过实际电路故障提取采集数据并诊断,所得结果表明该算法可以选择出所有影响结果的相关样本,保证了准确率并避免了大量样本训练,节省了时间。 展开更多
关键词 svdd 增量学习 故障诊断
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部