期刊文献+

基于迭代多模型ICA-SVDD的间歇过程故障在线监测 被引量:12

Online fault monitoring for batch processes based on adaptive multi-model ICA-SVDD
在线阅读 下载PDF
导出
摘要 采用多向主元分析的间歇过程故障监测方法需假设过程数据严格服从高斯分布,而且要对监测批次的测量未知值进行预测,这在一定程度上限制了其应用范围。为此通过建立迭代的多模型序列,不仅有效地解决了测量未知值的预测问题,而且考虑了各个间歇过程时间片之间的关联信息。同时,利用独立成分分析方法提取出过程的非高斯信息,通过引入支持向量数据描述方法对独立成分进行进一步建模,实现非高斯特性下的间歇过程故障在线监测。通过一个实际的半导体制造过程的实验研究,表明提出的新方法可以更有效地处理间歇过程数据信息。 Traditional batch process monitoring method MPCA is under the assumption that the process data are Gaussian distributed. Meanwhile, it needs to estimate the future value of the monitored batch. To some extents, these two drawbacks may limit the application of the MPCA method. Therefore, a sequence of adaptive multi-models is built, which avoids future value estimation of traditional method. Besides, it also considers the correlated information between time slices of the batch process. ICA is used to extract the non-Gaussian information from the batch process data, which is followed by the incorporation of SVDD to model the extracted independent components. Then a new statistic is constructed for batch process online fault monitoring. The experimental case study on a real semiconductor process shows that the proposed method can effectively deal with the batch process data information.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第7期1347-1352,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金资助项目(Grant 60774067) 浙江省自然科学基金资助项目(Y1080871) 浙江省科技计划项目(2008C31012)资助
关键词 MPCA 非高斯 迭代多模型 ICA—SVDD 故障在线监测 MPCA non-Gaussian adaptive multi-model ICA -SVDD online fault monitoring
作者简介 王培良,1986年于浙江大学获得学士学位,2005年于浙江大学获得硕士学位,现为湖州师范学院信息工程学院副教授,主要研究方向为智能控制、故障诊断和工业自动化。E—mail:wpl@hutc.zi.cn葛志强,2004年于浙江大学获得学士学位,现为浙江大学博士研究生,主要研究方向为复杂过程监控和故障诊断。E—mail:zqge@iipc.zju.edu.cn宋执环,1997年于浙江大学获得博士学位,现为浙江大学教授、博士生导师,主要研究方向为基于数据驱动的过程建模与故障诊断等。E—mail:zhsong@iipc.zju.edu.cn
  • 相关文献

参考文献14

  • 1NOMIKOS P, MACGREGOR J F. Multivariate SPC charts for monitoring batch process[ J]. Technometrics, 1995,37:41-59.
  • 2NOMIKOS P, MACGREGOR J F. Monitoring batch processes using multiway principal component analysis [J]. AIChE J. , 1994,40:1361-1375.
  • 3KANO M, TANAKA S, HASEBE S, et al. Monitoring independent components for fault detection [ J ]. AIChE J., 2003,49:969-976.
  • 4LEE J M, YOO C K, LEE I B. Statistical process monitoring with independent component analysis [ J ]. J. Process Control, 2004, 14:467-485.
  • 5YOO C K, LEE J M, VANROLLEGHEM P A, et al. On-line monitoring of batch process using multiway independent component analysis [ J ]. Chemometrics and In- telligent Laboratory Systems, April, 2004, 71 ( 1 ) : 151-163.
  • 6GE Z Q, SONG Z H. Online batch process monitoring based on multi-model ICA-PCA method [ C ]. The world congress on intelligent control and automation, Chongqing, China, 2008.
  • 7RANNAR S, MACGREGOR J F, WOLD S. Adaptive batch monitoring using hierarchical PCA [ J ] . Chem. Intell. Lab. Syst., 1998,41:73-81.
  • 8XIE L, HE N, WANG S Q, et al. Block recursive MP- CA and its application in batch process monitoring[ C ]. IEEE International Conference on Systems, Man & Cybernetics, 2003,3:2342-2347.
  • 9TAX D M J, DUIN R P W. Support vector domain description[J].Machine Learning, 2004,54:45-66.
  • 10LEE S W, PARK J Y, LEE S W. Low resolution face recognition based on support vector data description [ J ]. Pattern Recognition, 2006,39 : 1809-1812.

二级参考文献2

共引文献10

同被引文献123

引证文献12

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部