基于奇异值分解(Singular Value Decomposition,SVD)的推荐算法,在预测准确性、稳定性上具有明显优势,但在用随机梯度下降法求解过程中误差下降速度逐渐变慢、迭代次数较多,这极大限制了其在实际项目中的应用。针对这个问题,该文利用评...基于奇异值分解(Singular Value Decomposition,SVD)的推荐算法,在预测准确性、稳定性上具有明显优势,但在用随机梯度下降法求解过程中误差下降速度逐渐变慢、迭代次数较多,这极大限制了其在实际项目中的应用。针对这个问题,该文利用评分矩阵的差分矩阵来表征局部结构信息,并作为新的目标函数来优化SVD推荐算法。在MovieLens和Netflix数据集合上的实验结果表明:与经典SVD算法相比,该优化算法能够用更少的迭代次数得到更准确的预测结果;与当前的其他算法相比,该优化算法在预测准确性上仅次于SVD++,在训练时间上具有显著优势。展开更多
针对可见光图像弱小目标检测中的背景抑制和去噪问题,提出了奇异值分解(Singular Value Decomposition,SVD)带通滤波新方法.首先分析了图像奇异值与目标、噪声和图像背景的关系,结果表明奇异值的高序部分更多地反映图像噪声,中序部分更...针对可见光图像弱小目标检测中的背景抑制和去噪问题,提出了奇异值分解(Singular Value Decomposition,SVD)带通滤波新方法.首先分析了图像奇异值与目标、噪声和图像背景的关系,结果表明奇异值的高序部分更多地反映图像噪声,中序部分更多地反映目标性质,而低序部分更多地反映图像背景.以此为依据提出了SVD-Ⅰ型和SVD-Ⅱ型两种带通滤波器,并给出了奇异值曲线转折点法和门限准则法两种滤波器参数确定方法.实验表明SVD带通滤波能有效抑制图像背景,去除噪声,进而提高弱小目标的信噪比.展开更多
为实现对高频地波雷达(high frequency surface wave radar,HFSWR)一阶海杂波谱中目标的检测,提出了基于奇异值分解(singular value decomposition,SVD)的空域海杂波抑制算法(简称空域SVD算法).空域SVD算法是利用海杂波较强的相关性,将...为实现对高频地波雷达(high frequency surface wave radar,HFSWR)一阶海杂波谱中目标的检测,提出了基于奇异值分解(singular value decomposition,SVD)的空域海杂波抑制算法(简称空域SVD算法).空域SVD算法是利用海杂波较强的相关性,将邻近距离单元作为参考,对其阵列协方差矩阵进行SVD,估计空域的海杂波子空间和噪声子空间;再利用子空间的正交性,从阵列回波信号中去除其在海杂波子空间的投影分量,达到在空域抑制海杂波的目的.该方法与现有的空域海杂波抑制方法相比,不需要预先知道海杂波的方位,利用阵列协方差矩阵的SVD来估计子空间,使得子空间的估计比较容易且准确,提高了输出信杂噪比(signal to clutter plus noise ratio,SCNR),有利于目标的检测.展开更多
为了解决评分数据的稀疏性和用户最近邻的精确性问题,文章提出了一种基于奇异值分解(singular value decomposition,SVD)和项目属性的协同过滤推荐算法。该算法首先采用SVD方法对用户-项目评分矩阵降维,得到用户矩阵和项目矩阵,根据项...为了解决评分数据的稀疏性和用户最近邻的精确性问题,文章提出了一种基于奇异值分解(singular value decomposition,SVD)和项目属性的协同过滤推荐算法。该算法首先采用SVD方法对用户-项目评分矩阵降维,得到用户矩阵和项目矩阵,根据项目矩阵计算项目间的评分相似度,同时根据项目属性计算项目间的属性相似度,将2种相似度的结果加权计算得到项目间的相似度,最后采用最近邻的方法预测目标用户对待评分项目的评分。在MovieLens数据集上的实验结果表明,该文所提出的方法可以有效应对用户评分稀疏的问题,并能提高推荐的准确性。展开更多
文摘基于奇异值分解(Singular Value Decomposition,SVD)的推荐算法,在预测准确性、稳定性上具有明显优势,但在用随机梯度下降法求解过程中误差下降速度逐渐变慢、迭代次数较多,这极大限制了其在实际项目中的应用。针对这个问题,该文利用评分矩阵的差分矩阵来表征局部结构信息,并作为新的目标函数来优化SVD推荐算法。在MovieLens和Netflix数据集合上的实验结果表明:与经典SVD算法相比,该优化算法能够用更少的迭代次数得到更准确的预测结果;与当前的其他算法相比,该优化算法在预测准确性上仅次于SVD++,在训练时间上具有显著优势。
文摘针对可见光图像弱小目标检测中的背景抑制和去噪问题,提出了奇异值分解(Singular Value Decomposition,SVD)带通滤波新方法.首先分析了图像奇异值与目标、噪声和图像背景的关系,结果表明奇异值的高序部分更多地反映图像噪声,中序部分更多地反映目标性质,而低序部分更多地反映图像背景.以此为依据提出了SVD-Ⅰ型和SVD-Ⅱ型两种带通滤波器,并给出了奇异值曲线转折点法和门限准则法两种滤波器参数确定方法.实验表明SVD带通滤波能有效抑制图像背景,去除噪声,进而提高弱小目标的信噪比.
文摘为实现对高频地波雷达(high frequency surface wave radar,HFSWR)一阶海杂波谱中目标的检测,提出了基于奇异值分解(singular value decomposition,SVD)的空域海杂波抑制算法(简称空域SVD算法).空域SVD算法是利用海杂波较强的相关性,将邻近距离单元作为参考,对其阵列协方差矩阵进行SVD,估计空域的海杂波子空间和噪声子空间;再利用子空间的正交性,从阵列回波信号中去除其在海杂波子空间的投影分量,达到在空域抑制海杂波的目的.该方法与现有的空域海杂波抑制方法相比,不需要预先知道海杂波的方位,利用阵列协方差矩阵的SVD来估计子空间,使得子空间的估计比较容易且准确,提高了输出信杂噪比(signal to clutter plus noise ratio,SCNR),有利于目标的检测.
文摘为了解决评分数据的稀疏性和用户最近邻的精确性问题,文章提出了一种基于奇异值分解(singular value decomposition,SVD)和项目属性的协同过滤推荐算法。该算法首先采用SVD方法对用户-项目评分矩阵降维,得到用户矩阵和项目矩阵,根据项目矩阵计算项目间的评分相似度,同时根据项目属性计算项目间的属性相似度,将2种相似度的结果加权计算得到项目间的相似度,最后采用最近邻的方法预测目标用户对待评分项目的评分。在MovieLens数据集上的实验结果表明,该文所提出的方法可以有效应对用户评分稀疏的问题,并能提高推荐的准确性。