Theoretical Studies in Literature and Art(ISSN 0257-0254)is a most highly-recognized peer-reviewed journal in China,and has been listed in Scopus and Ebsco.TSLA,launched in 1980 bimonthly,publishes original articles i...Theoretical Studies in Literature and Art(ISSN 0257-0254)is a most highly-recognized peer-reviewed journal in China,and has been listed in Scopus and Ebsco.TSLA,launched in 1980 bimonthly,publishes original articles in Chinese or English in arts and humanities,especially literary studies.We cover any topic/issue involving,of.about or on but not confined to China in the fields of literary theory,critical theory,aesthetics,philosophy of art,cultural studies,etc.展开更多
Theoretical Studies in Literature and Art (ISSN 0257-0254) is a most highly-recognized peer-reviewed journal in China,and has been listed in Scopus and Ebsco.TSLA,launched in 1980 bimonthly,publishes original articles...Theoretical Studies in Literature and Art (ISSN 0257-0254) is a most highly-recognized peer-reviewed journal in China,and has been listed in Scopus and Ebsco.TSLA,launched in 1980 bimonthly,publishes original articles in Chinese or English in arts and humanities,especially literary studies.We cover any topic/issue involving,of,about or on but not confined to China in the fields of literary theory,critical theory,aesthetics,philosophy of art,cultural studies,etc.展开更多
Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian Univers...Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,China.展开更多
OBJECTIVE The emergence of evolving variants of Coronavirus disease 2019(COVID-19)has fostered the need for change of newer and adaptive treatments for these infections.During the COVID-19 pandemic and persists,tradit...OBJECTIVE The emergence of evolving variants of Coronavirus disease 2019(COVID-19)has fostered the need for change of newer and adaptive treatments for these infections.During the COVID-19 pandemic and persists,traditional Chinese medicine(TCM)herbs exhibit significant bioactivity and therapeutic effect.This study is aimed to evaluate the efficacy of four TCM preparations on 28-day mortality risk of patients and changes of the laboratory indicators.METHODS The retrospective cohort study included patients with COVID-19 who were admitted to the Jiangsu Province Hospital of Chinese Medicine from December 15,2022 to January 15,2023,and those died within 48 hours of admission or cannot be tracked for outcomes were excluded.The primary outcome was survival status in 28 days(death or survival)starting from the day of admission.The second outcomes were laboratory indicators,including absolute lymphocyte count,lactate dehydrogenase,creatinine,and blood urea nitrogen.Binary logistic regressions were used to estimate the effect of TCM preparations on the primary and secondary outcomes in main analysis.Meanwhile,heterogeneity and robustness of results from main analysis were assessed by subgroup analyses and multiple sensitivity analyses.RESULTS 1816 eligible patients were included in analysis dataset,including 573 patients received standard care(control group)and 1243 patients received TCM preparations(hospital preparation group).The 28-day mortality rate of hospital preparation group was lower than that of control group(4.75%vs.14.83%),and the difference was statistically significant(χ^(2)=54.666,P<0.001).The risk of 28-day mortality was 0.535 times lower in the hospital preparation group as compared with the control group(OR=0.46,95%CI:0.305-0.708,P<0.001)showed by multivariable binary logistic regressions.Subgroup analyses showed that taking TCM preparations reduced the 28-day mortality risk.Sensitivity analyses demonstrated that the results of the main analysis for primary outcomes were robust.For secondary outcomes,the risk of abnormal absolute lymphocyte counts at discharge in the hospital preparation group decreased by 0.284 times(OR=0.703,95%CI:0.515-0.961,P=0.027).CONCLUSION Compared with standard of care,taking four hospital preparations including Kanggan Heji,Feining Heji,Qishen Gubiao Keli,and Qianghuo Qushi Qingwen Heji decreased risk of 28-day mortality among hospitalized COVID-19 patients.TCM therapy achieves adequate therapeutic effects in COVID-19.展开更多
Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular st...Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.展开更多
The detonation of fuel-rich explosives yields combustible products that persistently burn upon mixing with ambient oxygen,releasing additional energy through a phenomenon known as the afterburning effect.This process ...The detonation of fuel-rich explosives yields combustible products that persistently burn upon mixing with ambient oxygen,releasing additional energy through a phenomenon known as the afterburning effect.This process greatly influences the evolution of confined blast loading and the subsequent structural response,which is crucial in confined blast scenarios.Given the complex nature of the reaction process,accurate analysis of the afterburning effect remains challenging.Previous studies have either overlooked the mechanisms of detonation product combustion or failed to provide experimental validation.This study introduces a three-dimensional model to effectively characterize the combustion of detonation products.The model integrates chemical reaction source terms into the governing equations to consider the combustion processes.Numerical simulations and experimental tests were conducted to analyze the combustion and energy release from the detonation products of fuel-rich explosives in confined spaces.Approximately 50%of the energy was released during the combustion of detonation products in a confined TNT explosion.Although the combustion of these products was much slower than the detonation process,it aligned with the dynamic response of the structure,which enhanced the explosive yield.Excluding afterburning from the analysis reduced the center-point deformation of the structure by 30%.Following the inclusion of afterburning,the simulated quasistatic pressure increased by approximately 45%.Subsequent comparisons highlighted the merits of the proposed approach over conventional methods.This approach eliminates the reliance on empirical parameters,such as the amount and rate of energy release during afterburning,thereby laying the foundation for understanding load evolution in more complex environments,such as ships,buildings,and underground tunnels.展开更多
文摘Theoretical Studies in Literature and Art(ISSN 0257-0254)is a most highly-recognized peer-reviewed journal in China,and has been listed in Scopus and Ebsco.TSLA,launched in 1980 bimonthly,publishes original articles in Chinese or English in arts and humanities,especially literary studies.We cover any topic/issue involving,of.about or on but not confined to China in the fields of literary theory,critical theory,aesthetics,philosophy of art,cultural studies,etc.
文摘Theoretical Studies in Literature and Art (ISSN 0257-0254) is a most highly-recognized peer-reviewed journal in China,and has been listed in Scopus and Ebsco.TSLA,launched in 1980 bimonthly,publishes original articles in Chinese or English in arts and humanities,especially literary studies.We cover any topic/issue involving,of,about or on but not confined to China in the fields of literary theory,critical theory,aesthetics,philosophy of art,cultural studies,etc.
文摘Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,China.
文摘OBJECTIVE The emergence of evolving variants of Coronavirus disease 2019(COVID-19)has fostered the need for change of newer and adaptive treatments for these infections.During the COVID-19 pandemic and persists,traditional Chinese medicine(TCM)herbs exhibit significant bioactivity and therapeutic effect.This study is aimed to evaluate the efficacy of four TCM preparations on 28-day mortality risk of patients and changes of the laboratory indicators.METHODS The retrospective cohort study included patients with COVID-19 who were admitted to the Jiangsu Province Hospital of Chinese Medicine from December 15,2022 to January 15,2023,and those died within 48 hours of admission or cannot be tracked for outcomes were excluded.The primary outcome was survival status in 28 days(death or survival)starting from the day of admission.The second outcomes were laboratory indicators,including absolute lymphocyte count,lactate dehydrogenase,creatinine,and blood urea nitrogen.Binary logistic regressions were used to estimate the effect of TCM preparations on the primary and secondary outcomes in main analysis.Meanwhile,heterogeneity and robustness of results from main analysis were assessed by subgroup analyses and multiple sensitivity analyses.RESULTS 1816 eligible patients were included in analysis dataset,including 573 patients received standard care(control group)and 1243 patients received TCM preparations(hospital preparation group).The 28-day mortality rate of hospital preparation group was lower than that of control group(4.75%vs.14.83%),and the difference was statistically significant(χ^(2)=54.666,P<0.001).The risk of 28-day mortality was 0.535 times lower in the hospital preparation group as compared with the control group(OR=0.46,95%CI:0.305-0.708,P<0.001)showed by multivariable binary logistic regressions.Subgroup analyses showed that taking TCM preparations reduced the 28-day mortality risk.Sensitivity analyses demonstrated that the results of the main analysis for primary outcomes were robust.For secondary outcomes,the risk of abnormal absolute lymphocyte counts at discharge in the hospital preparation group decreased by 0.284 times(OR=0.703,95%CI:0.515-0.961,P=0.027).CONCLUSION Compared with standard of care,taking four hospital preparations including Kanggan Heji,Feining Heji,Qishen Gubiao Keli,and Qianghuo Qushi Qingwen Heji decreased risk of 28-day mortality among hospitalized COVID-19 patients.TCM therapy achieves adequate therapeutic effects in COVID-19.
文摘Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.
基金supported by the National Natural Science Foundation of China(Grant Nos.52171318 and 12202329)Joint Foundation of the Ministry of Education(Grant No.8091B022105)。
文摘The detonation of fuel-rich explosives yields combustible products that persistently burn upon mixing with ambient oxygen,releasing additional energy through a phenomenon known as the afterburning effect.This process greatly influences the evolution of confined blast loading and the subsequent structural response,which is crucial in confined blast scenarios.Given the complex nature of the reaction process,accurate analysis of the afterburning effect remains challenging.Previous studies have either overlooked the mechanisms of detonation product combustion or failed to provide experimental validation.This study introduces a three-dimensional model to effectively characterize the combustion of detonation products.The model integrates chemical reaction source terms into the governing equations to consider the combustion processes.Numerical simulations and experimental tests were conducted to analyze the combustion and energy release from the detonation products of fuel-rich explosives in confined spaces.Approximately 50%of the energy was released during the combustion of detonation products in a confined TNT explosion.Although the combustion of these products was much slower than the detonation process,it aligned with the dynamic response of the structure,which enhanced the explosive yield.Excluding afterburning from the analysis reduced the center-point deformation of the structure by 30%.Following the inclusion of afterburning,the simulated quasistatic pressure increased by approximately 45%.Subsequent comparisons highlighted the merits of the proposed approach over conventional methods.This approach eliminates the reliance on empirical parameters,such as the amount and rate of energy release during afterburning,thereby laying the foundation for understanding load evolution in more complex environments,such as ships,buildings,and underground tunnels.