采用多元回归分析原理及模型,结合回采工作面瓦斯涌出量的实测数据,利用SPSS(Statistical Product and Service Solutions)软件对回采工作面瓦斯涌出量的影响因素进行多元回归分析,建立了回归方程来预测回采工作面瓦斯涌出量。结果表明...采用多元回归分析原理及模型,结合回采工作面瓦斯涌出量的实测数据,利用SPSS(Statistical Product and Service Solutions)软件对回采工作面瓦斯涌出量的影响因素进行多元回归分析,建立了回归方程来预测回采工作面瓦斯涌出量。结果表明,利用SPSS软件直接对影响回采工作面瓦斯涌出量的因素进行回归分析,避免了复杂的推导与计算,预测精度较高。展开更多
文摘准确预测台区的电力负荷,能够促使电力企业合理安排调度计划,保障台区电力安全和经济稳定运行。为了充分挖掘电力负荷数据的特征,提高预测的精度,提出一种基于自适应辛几何模态分解(adaptive symplectic geometry mode decomposition,ASGMD)、多元线性回归(multiple linear regression,MLR)和卷积长短时记忆(convolutional long short-term memory,CLSTM)网络的电力负荷预测方法。首先,应用ASGMD将台区负荷数据分解为弱相关和强相关两种分量;然后,利用MLR和CLSTM分别对上述两种分量分别进行预测;最后,组合各模型结果,得到最终负荷预测值。实例分析结果表明,所提模型较其他模型具有更高的预测准确度。
文摘采用多元回归分析原理及模型,结合回采工作面瓦斯涌出量的实测数据,利用SPSS(Statistical Product and Service Solutions)软件对回采工作面瓦斯涌出量的影响因素进行多元回归分析,建立了回归方程来预测回采工作面瓦斯涌出量。结果表明,利用SPSS软件直接对影响回采工作面瓦斯涌出量的因素进行回归分析,避免了复杂的推导与计算,预测精度较高。