期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Riesz空间分数阶对流扩散方程的一种计算有效求解方法 被引量:2
1
作者 沈淑君 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期20-24,共5页
Riesz空间分数阶对流扩散方程是从混沌动力系统导出的.继续Ilic,Liu等的工作,我们提出在有界区域内求解Riesz空间分数阶对流-扩散方程的一种新的计算有效方法.即基于这两个Riesz空间分数阶导数的矩阵表示.这个方法的创新在于这个算子的... Riesz空间分数阶对流扩散方程是从混沌动力系统导出的.继续Ilic,Liu等的工作,我们提出在有界区域内求解Riesz空间分数阶对流-扩散方程的一种新的计算有效方法.即基于这两个Riesz空间分数阶导数的矩阵表示.这个方法的创新在于这个算子的标准离散得到包含具有相同分数次幂的矩阵的一个常微分方程组,并利用计算有效的分数阶行方法求解.同时借助于分数阶导数的谱表示和拉普拉斯变换,导出这个Riesz空间分数阶对流扩散方程的解析解.最后给出了数值例子来证实数值方法的有效性. 展开更多
关键词 riesz空间分数阶导数 矩阵转换技巧 拉普拉斯变换 对流一扩散方程 行方法
在线阅读 下载PDF
一类n维空间Riesz分数阶扩散方程的解析解 被引量:4
2
作者 马亮亮 刘冬兵 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期506-509,共4页
文章讨论了n维空间Riesz分数阶扩散方程的解,用特征函数幂级数形式定义了n维分数阶拉普拉斯算子,并给出了分数阶拉普拉斯算子与Riesz分数阶导数之间的关系,最后用谱表示法导出了n维空间Riesz分数阶扩散方程在齐次和非齐次情况下,在有界... 文章讨论了n维空间Riesz分数阶扩散方程的解,用特征函数幂级数形式定义了n维分数阶拉普拉斯算子,并给出了分数阶拉普拉斯算子与Riesz分数阶导数之间的关系,最后用谱表示法导出了n维空间Riesz分数阶扩散方程在齐次和非齐次情况下,在有界区域上满足一定初边值条件的基本解。 展开更多
关键词 riesz分数导数 空间分数扩散方程 Riemann-Liouville分数导数 解析解
在线阅读 下载PDF
基于Riesz导数的分数阶Birkhoff系统的Noether对称性与守恒量 被引量:6
3
作者 张毅 周燕 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第4期658-668,共11页
提出并研究Riesz分数阶导数下分数阶Birkhoff系统的Noether对称性与守恒量。分别在RieszRiemann-Liouville分数阶导数和Riesz-Caputo分数阶导数下,建立分数阶Pfaff变分问题,给出分数阶Birkhoff方程。基于分数阶Pfaff作用量在无限小变换... 提出并研究Riesz分数阶导数下分数阶Birkhoff系统的Noether对称性与守恒量。分别在RieszRiemann-Liouville分数阶导数和Riesz-Caputo分数阶导数下,建立分数阶Pfaff变分问题,给出分数阶Birkhoff方程。基于分数阶Pfaff作用量在无限小变换下的不变性,建立分数阶Birkhoff系统的Noether定理。定理的证明分成两步:一是在时间不变的无限小变换下给出证明;二是利用时间重新参数化技术得到一般情况下的分数阶Noether定理。最后举例说明结果的应用。 展开更多
关键词 分数Birkhoff系统 NOETHER对称性 分数守恒量 riesz分数导数
在线阅读 下载PDF
基于经典和Riesz导数的分数阶广义Birkhoff系统的Noether定理 被引量:1
4
作者 周颖 张毅 《南京理工大学学报》 CAS CSCD 北大核心 2021年第5期621-628,共8页
为了研究分数阶模型下Birkhoff系统的对称性与守恒量之间的内在联系,该文提出并证明含经典和Riesz导数(包括Riesz-Riemann-Liouville导数和Riesz-Caputo导数)的分数阶广义Birkhoff系统的Noether定理。基于经典和Riesz导数的分数阶广义Pf... 为了研究分数阶模型下Birkhoff系统的对称性与守恒量之间的内在联系,该文提出并证明含经典和Riesz导数(包括Riesz-Riemann-Liouville导数和Riesz-Caputo导数)的分数阶广义Birkhoff系统的Noether定理。基于经典和Riesz导数的分数阶广义Pfaff-Birkhoff原理,导出相应的分数阶广义Birkhoff方程。分析系统的Noether对称性与守恒量,采用时间重新参数化方法证明分数阶Noether定理,并利用“传递公式”给出了分数阶守恒量的显形式。最后给出一个算例以说明其应用。 展开更多
关键词 广义BIRKHOFF系统 NOETHER对称性 分数守恒量 分数微积分 riesz导数
在线阅读 下载PDF
Riesz空间分数阶扩散方程的分数阶中心差分加权离散格式
5
作者 邓娟 郑洲顺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期858-864,共7页
在有限区域内考虑带齐次Dirichlet边界条件的Riesz空间分数阶扩散方程的初边值问题,利用分数阶中心差分对空间方向进行离散,在时间方向上用隐式和显式Euler格式的加权平均进行离散,构造了空间2阶、时间γ阶(γ=1,2)的全离散加权差分格式... 在有限区域内考虑带齐次Dirichlet边界条件的Riesz空间分数阶扩散方程的初边值问题,利用分数阶中心差分对空间方向进行离散,在时间方向上用隐式和显式Euler格式的加权平均进行离散,构造了空间2阶、时间γ阶(γ=1,2)的全离散加权差分格式.利用函数的单调性证明了当加权因子0≤θ≤1/2时差分离散格式是无条件稳定的,当1/2<θ≤1时差分离散格式是条件稳定的,并给出了稳定的条件.证明了相应差分离散格式的收敛性.用实际数值算例验证了差分离散格式的有效性. 展开更多
关键词 riesz导数 分数扩散方程 分数中心差分 稳定性分析 收敛性分析
在线阅读 下载PDF
Riesz空间分数阶非线性sine-Gordon方程新的保能量格式
6
作者 刘莹 孙建强 《山东科技大学学报(自然科学版)》 CAS 北大核心 2020年第6期102-108,共7页
首先利用傅里叶拟谱方法对Riesz空间分数阶导数离散近似,再利用Boole离散线积分方法结合高阶平均向量场方法构造出Riesz空间分数阶非线性sine-Gordon方程新的保能量格式。最后利用新格式数值模拟不同初值条件下Riesz空间分数阶非线性sin... 首先利用傅里叶拟谱方法对Riesz空间分数阶导数离散近似,再利用Boole离散线积分方法结合高阶平均向量场方法构造出Riesz空间分数阶非线性sine-Gordon方程新的保能量格式。最后利用新格式数值模拟不同初值条件下Riesz空间分数阶非线性sine-Gordon方程孤立波的演化行为。数值实验验证了新格式的有效性和精确性。 展开更多
关键词 平均向量场方法 Boole离散线积分法 riesz空间分数非线性sine-Gordon方程 傅里叶拟谱方法 riesz空间分数阶导数
在线阅读 下载PDF
Riesz空间分数阶Klein-Gordon-Zakharov方程的保能量格式
7
作者 刘莹 孙建强 孔嘉萌 《山东科技大学学报(自然科学版)》 CAS 北大核心 2022年第6期104-109,共6页
首先利用傅里叶拟谱方法对Riesz空间分数阶导数离散近似,然后利用二阶平均向量场方法构造出Riesz空间分数阶非线性Klein-Gordon-Zakharov方程新的保能量格式,最后利用新的平均向量场格式数值模拟方程孤立波的演化行为。数值模拟结果表明... 首先利用傅里叶拟谱方法对Riesz空间分数阶导数离散近似,然后利用二阶平均向量场方法构造出Riesz空间分数阶非线性Klein-Gordon-Zakharov方程新的保能量格式,最后利用新的平均向量场格式数值模拟方程孤立波的演化行为。数值模拟结果表明,Riesz空间分数阶非线性Klein-Gordon-Zakharov方程的新格式可以精确地保持方程的能量守恒特性。 展开更多
关键词 平均向量场方法 Klein-Gordon-Zakharov方程 傅里叶拟谱方法 riesz空间分数阶导数
在线阅读 下载PDF
分数阶Navier-Stokes方程在Sobolev-Lorentz空间适度解的存在性
8
作者 秦诗轩 何家维 《应用数学》 北大核心 2024年第3期765-778,共14页
本文研究具有Caputo导数的时间分数阶Navier-Stokes方程的Cauchy问题,利用Banach空间的压缩映照原理,获得在齐次Sobolev-Lorentz空间中局部适度解的存在性.分别建立了临界指标与超临界指标情形下Besov空间小初值条件相应的整体和局部适... 本文研究具有Caputo导数的时间分数阶Navier-Stokes方程的Cauchy问题,利用Banach空间的压缩映照原理,获得在齐次Sobolev-Lorentz空间中局部适度解的存在性.分别建立了临界指标与超临界指标情形下Besov空间小初值条件相应的整体和局部适度解存在性理论. 展开更多
关键词 分数Caputo导数 分数Navier-Stokes方程 齐次Sobolev-Lorentz空间 存在性
在线阅读 下载PDF
空间分数阶扩散方程的超线性收敛离散格式 被引量:5
9
作者 章红梅 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期464-468,共5页
考虑了空间分数阶扩散方程的数值解,构造了一个隐式差分离散格式,证明了此格式是无条件稳定的,且关于空间步长是超线性收敛的.最后,给出一个数值例子说明本文的理论分析是正确的,所构造的离散格式是有效的.
关键词 空间分数扩散方程 CAPUTO导数 Riemann-Liouville分数导数 积分
在线阅读 下载PDF
Riesz分数阶反应-扩散方程数值近似的稳定性与收敛性分析 被引量:5
10
作者 陈景华 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期466-469,共4页
分数阶微分方程可以用来模拟工程,物理,生物等科学领域中的许多现象,然而分数阶微分方程的数值方法与理论分析是一项困难的事,其理论分析与经典的数值方法之间有很大的差异.本文考虑一个Riesz分数阶反应-扩散方程.这个方程是将一般的反... 分数阶微分方程可以用来模拟工程,物理,生物等科学领域中的许多现象,然而分数阶微分方程的数值方法与理论分析是一项困难的事,其理论分析与经典的数值方法之间有很大的差异.本文考虑一个Riesz分数阶反应-扩散方程.这个方程是将一般的反应-扩散方程的二阶导用Riesz导数来替换.利用Riemann-Liouville定义和Grünwald-Letnikov定义之间的关系,我们提出了一个显示的数值近似,同时讨论了稳定性与收敛性,并给出数值例子. 展开更多
关键词 riesz反应-扩散方程 分数导数 Riemann-Liouville Grünwald-Letnikov 稳定性 收敛性
在线阅读 下载PDF
两边空间-时间分数阶扩散方程的加权有限差分格式(英文) 被引量:4
11
作者 马维元 刘华 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期41-48,70,共9页
对于空间-时间分数阶扩散方程的初边值问题提出了一种加权差分格式.利用能量估计,得到了差分格式的稳定性.然后使用数学归纳法证明了在相同的条件下,所提出的的格式是收敛的.最后通过一个例子说明了所提出的格式是可靠的、有效的.
关键词 分数扩散方程 空间-时间分数导数 加权差分格式 收敛性 稳定性
在线阅读 下载PDF
数值求解一类空间分数阶扩散方程源项系数反问题 被引量:1
12
作者 阮周生 张文 王泽文 《河北大学学报(自然科学版)》 CAS 北大核心 2012年第5期458-463,共6页
数值求解一类空间分数阶扩散方程源项系数反问题.利用函数变换,将源项系数反问题转为对应的定解问题,利用隐式差分格式,求解对应定解问题,然后利用数值积分,求得待定系数函数的数值解,并且证明了隐式差分格式的绝对稳定性.通过数值算例... 数值求解一类空间分数阶扩散方程源项系数反问题.利用函数变换,将源项系数反问题转为对应的定解问题,利用隐式差分格式,求解对应定解问题,然后利用数值积分,求得待定系数函数的数值解,并且证明了隐式差分格式的绝对稳定性.通过数值算例表明,该数值方法具有较高的计算精度. 展开更多
关键词 反常扩散 空间分数导数 反问题 有限差分格式 稳定性
在线阅读 下载PDF
一类带变系数的空间分数阶偏微分方程的Chebyshev拟谱分法(英文) 被引量:2
13
作者 杨银 《工程数学学报》 CSCD 北大核心 2014年第5期745-752,共8页
分数阶微分方程已经广泛地应用于工程等各个领域.在本文中,我们针对一类带变系数的空间分数阶偏微分方程,提出了一种Chebyshev拟谱的数值方法,其中分数阶导数是由Caputo分数阶导数定义.该方法能将空间分数阶偏微分方程转化为一个常微分... 分数阶微分方程已经广泛地应用于工程等各个领域.在本文中,我们针对一类带变系数的空间分数阶偏微分方程,提出了一种Chebyshev拟谱的数值方法,其中分数阶导数是由Caputo分数阶导数定义.该方法能将空间分数阶偏微分方程转化为一个常微分方程,然后在时间上用有限差分方法离散.数值实验表明该方法是有效的. 展开更多
关键词 空间分数偏微分方程 CHEBYSHEV多项式 拟谱方法 CAPUTO导数
在线阅读 下载PDF
一类空间-时间分数阶Whitham-Broer-Kaup方程的行波解 被引量:8
14
作者 郭丽红 周冉 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第1期7-12,共6页
考虑修正Riemann-Liouville分数阶导数意义下的一类空间-时间Whitham-Broer-Kaup(WBK)方程行波解的存在性,首先将WBK方程化为常微分方程组,然后利用首次积分法得到该方程一些行波解的解析表达式.
关键词 空间-时间分数WBK方程 修正的Riemann-Liouville分数导数 行波解 首次积分方法
在线阅读 下载PDF
非饱和土空间分数阶渗流模型的有限差分方法研究 被引量:4
15
作者 王睿 周宏伟 +2 位作者 卓壮 薛东杰 杨帅 《岩土工程学报》 EI CAS CSCD 北大核心 2020年第9期1759-1764,共6页
地下水在非饱和土体中的输运过程及渗流特性具有重要的研究意义。首先,从反常扩散方程的角度分析地下水在非饱和土中的输运过程,引入Conformable导数,得到了一维情况下非饱和土空间分数阶渗流方程;其次,用全隐式形式的有限差分法求解渗... 地下水在非饱和土体中的输运过程及渗流特性具有重要的研究意义。首先,从反常扩散方程的角度分析地下水在非饱和土中的输运过程,引入Conformable导数,得到了一维情况下非饱和土空间分数阶渗流方程;其次,用全隐式形式的有限差分法求解渗流方程离散格式,得到了求解的迭代矩阵;最后,根据已有论文的试验数据对渗流模型的有效性进行了验证,并对公式中的参数进行了敏感性分析。结果表明,新模型能够较好地描述地下水在非饱和土体中的输运过程,Conformable导数具有较好的适用性。 展开更多
关键词 非饱和土 空间分数导数 反常扩散 有限差分法 Richard’s方程
在线阅读 下载PDF
空间分数阶电报方程的格子Boltzmann方法 被引量:4
16
作者 李梦军 戴厚平 +1 位作者 魏雪丹 郑洲顺 《应用数学和力学》 CSCD 北大核心 2021年第5期522-530,共9页
应用格子Boltzmann方法(LBM)对Riemann-Liouville空间分数阶电报方程进行了数值模拟研究.首先,将分数阶算子中的积分项进行离散化处理,并进行了收敛阶分析.然后,构建了带修正函数项的一维三速度(D1Q3)的LBM演化模型.利用Chapman-Enskog... 应用格子Boltzmann方法(LBM)对Riemann-Liouville空间分数阶电报方程进行了数值模拟研究.首先,将分数阶算子中的积分项进行离散化处理,并进行了收敛阶分析.然后,构建了带修正函数项的一维三速度(D1Q3)的LBM演化模型.利用Chapman-Enskog多尺度技术和Taylor展开技术,推导出各平衡态分布函数和修正函数的具体表达式,准确地从所建的演化模型恢复出宏观方程.最后,数值计算结果表明该模型是稳定、有效的. 展开更多
关键词 Riemann-Liouville分数导数 空间分数电报方程 格子BOLTZMANN模型 Chapman-Enskog展开
在线阅读 下载PDF
基于自适应Riesz分数阶微分的雾天图像增强 被引量:2
17
作者 雷思佳 赵凤群 《计算机应用》 CSCD 北大核心 2018年第5期1427-1431,共5页
为了提高雾天图像的清晰度,解决分数阶微分阶数取值的单一性问题,提出了一种新的自适应分数阶微分的图像增强方法。基于具有六阶精度的Riesz分数阶微分的近似计算公式,构造了一种新的高精度分数阶微分掩模——RH算子,并对其进行改进,形... 为了提高雾天图像的清晰度,解决分数阶微分阶数取值的单一性问题,提出了一种新的自适应分数阶微分的图像增强方法。基于具有六阶精度的Riesz分数阶微分的近似计算公式,构造了一种新的高精度分数阶微分掩模——RH算子,并对其进行改进,形成了IRH算子。针对图像局部特征建立了分数阶微分函数,提出了一种分数阶微分选取准则,实现了阶数逐点自适应选取的方法。结合IRH算子,形成了自适应IRH图像增强算法。对于彩色图像,由于RGB空间各通道之间独立性低,对各通道增强后再叠加可能会出现颜色失真,因此将图像由RGB空间转化到HSV空间且只对亮度通道进行增强处理。选择一组雾天图像进行了实验,并与Tiansi算子,基于分割的自适应分数阶微分图像增强算法以及自适应分数阶微分的复合双边滤波算法进行了比较,实验结果表明所提算法具有明显的增强效果,并且通过计算信息熵和平均梯度进一步表明了该算法的有效性。 展开更多
关键词 riesz分数微分 图像增强 自适应分数微分 HSV空间 雾天图像
在线阅读 下载PDF
不变子空间方法在时空分数阶偏微分方程中的应用 被引量:3
18
作者 侯婕 王丽真 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第1期84-87,92,共5页
文中介绍了不变子空间方法及其具体步骤,应用此方法研究了6类具有Caputo型导数的时空分数阶偏微分方程或方程组,并构造了这些方程(组)的解析解或给出了精确解所满足的决定方程组。
关键词 CAPUTO导数 不变子空间方法 时空分数偏微分方程
在线阅读 下载PDF
变时间分数阶反应扩散方程的数值分析 被引量:2
19
作者 刘冬兵 马亮亮 《江南大学学报(自然科学版)》 CAS 2014年第1期109-112,共4页
考虑时变分数阶反应扩散方程的数值逼近问题。采用分段线性插值法结合对一阶时间导数的一个二阶近似离散Coimbra时变分数阶导数,用中心差分离散二阶空间分数阶导数通过数值例子验证了提出的数值方法,说明了数值方法的有效性。
关键词 时变分数反应扩散方 Coimbra变分数导数 数值逼近 中心差分 空间分数导数
在线阅读 下载PDF
配置方法求多阶的分数阶常微分方程的数值解 被引量:1
20
作者 张晓娟 王婧 《华北水利水电学院学报》 2010年第3期100-102,共3页
采用配置样条方法,以多项式样条函数的形式得出多阶的分数阶常微分方程的数值解,通过比较数值解与精确解的结果证实了此方法是求解分数阶方程的一种有效数值算法.
关键词 配置方法 分数常微分方程 CAPUTO分数导数 样条空间
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部