期刊文献+

空间分数阶电报方程的格子Boltzmann方法 被引量:4

A Lattice Boltzmann Method for Spatial Fractional-Order Telegraph Equations
在线阅读 下载PDF
导出
摘要 应用格子Boltzmann方法(LBM)对Riemann-Liouville空间分数阶电报方程进行了数值模拟研究.首先,将分数阶算子中的积分项进行离散化处理,并进行了收敛阶分析.然后,构建了带修正函数项的一维三速度(D1Q3)的LBM演化模型.利用Chapman-Enskog多尺度技术和Taylor展开技术,推导出各平衡态分布函数和修正函数的具体表达式,准确地从所建的演化模型恢复出宏观方程.最后,数值计算结果表明该模型是稳定、有效的. The lattice Boltzmann method(LBM)was applied to numerically solve Riemann-Liouville spatial fractional-order telegraph equations.Firstly,the integral term of the fractional-order operator was discretized and the order of convergence was analyzed.Then,a 1 D and 3-velocity(D1 Q3)LBM evolution model with modified functions was established.The expressions of equilibrium distribution functions and correction functions were deduced by means of the Chapman-Enskog multi-scale analysis and the Taylor expansion technique.Therefore,the macroscopic equation was exactly recovered from the established evolution model.Numerical results show the stability and effectiveness of the model.
作者 李梦军 戴厚平 魏雪丹 郑洲顺 LI Mengjun;DAI Houping;WEI Xuedan;ZHENG Zhoushun(College of Mathematics and Statistics,Jishou University,Jishou,Hunan 416000,P.R.China;School of Mathematics and Statistics,Central South University,Changsha 410083,P.R.China)
出处 《应用数学和力学》 CSCD 北大核心 2021年第5期522-530,共9页 Applied Mathematics and Mechanics
基金 国家自然科学基金(51974377)。
关键词 Riemann-Liouville分数阶左导数 空间分数阶电报方程 格子BOLTZMANN模型 Chapman-Enskog展开 left Riemann-Liouville fractional derivative spatial fractional-order telegraph equation lattice Boltzmann model Chapman-Enskog expansion
作者简介 李梦军(1996—),男,硕士(E⁃mail:limengjun2020@126.com);通讯作者:戴厚平(1979—),男,副教授,博士(E⁃mail:daihouping@163.com).
  • 相关文献

参考文献3

二级参考文献23

  • 1尹建华,任建娅,仪明旭.Legendre小波求解非线性分数阶Fredholm积分微分方程[J].辽宁工程技术大学学报(自然科学版),2012,31(3):405-408. 被引量:21
  • 2任建娅,尹建华,耿万海.小波方法求一类变系数分数阶微分方程数值解[J].辽宁工程技术大学学报(自然科学版),2012,31(6):925-928. 被引量:12
  • 3郭柏林,蒲学科,黄风辉.分数阶偏微分方程及其数值解[M].北京:科学出版社,2011.
  • 4Holmes E.Are diffusion models too simple? A comparison with telegraph models of invasion[J] .The American Naturalist, 1993,142(5):779-795.
  • 5Barletta A,Zanchini E.A thermal potential formulation of hyperbolic heat conduction[J].Journal of Heat Transfer, 1999,121:166-169.
  • 6Baumeister K J,Hamill T D.Hyperbolic heat conduction equation-a solution for the semi-infinite body problem[J].Journal of HeatTransfer, 1969,91:543 -548.
  • 7Azab EI M S,Gamel EI M.A numerical algorithm for the solution of telegraph equations[J].Applied Mathematics and Computation,2007, 190:757-764.
  • 8Esmaeilbeigi M,Hosseini M M,Mohyud Din S T.A new approach of the radial basis functions cmethod for telegraph equations[J].Intemational Journal of the Physical Sciences,2011,6(6): 1 517-1 527.
  • 9Podlubny I.Fractional Differential Equations[M].New York:Academic Press. 1999.
  • 10M-eerschaert M M,Tadjeran C.Finite difference approxhnations for fractional advection-dispcrsion flow cquations[J].Joumal of Computational and Applied Mathematics,2004,172( 1 ):65-77.

共引文献8

同被引文献9

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部