In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive fun...In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.展开更多
Fuzzy technology is a newly developed discipline based on fuzzy mathematics. In the recent years, it has been successfully applied into many areas, such as process control, diagnosis, evaluation, decision making and s...Fuzzy technology is a newly developed discipline based on fuzzy mathematics. In the recent years, it has been successfully applied into many areas, such as process control, diagnosis, evaluation, decision making and scheduling, especially in simulation where accurate mathematical models can not or very hard be established. In this paper, to meet the demands of fuzzy simulation, two fuzzy nets will first be presented, which are quite suitable for modeling the parallel or concurrent systems with fuzzy behavior. Then, a concept of active simulation will be introduced, in which the simulation model not only can show its fuzzy behavior, but also has a certain ability which can actively perform many very useful actions, such as automatic warning, realtime monitoring, simulation result checking, simulation model self-adapting, error recovery, simulating path tracing, system states inspecting and exception handling, by a unified approach while some specified events occur. The simulation model described by this powerful simulation modeling tool is concurrently driven by a network interpreter and an event monitor that all can be implemented by software or hardware. Besides, some interesting applications are given in the paper.展开更多
近年来,模仿学习被广泛应用于机器人领域,并展示出巨大的潜力。同时关注到智能系统在教育领域的应用越来越多样化,将机器人合理地应用到教学中可以提升教学效果,如果机器人可以教授一些专业技巧,如演奏乐器,可以为学生和人类老师都提供...近年来,模仿学习被广泛应用于机器人领域,并展示出巨大的潜力。同时关注到智能系统在教育领域的应用越来越多样化,将机器人合理地应用到教学中可以提升教学效果,如果机器人可以教授一些专业技巧,如演奏乐器,可以为学生和人类老师都提供很大的便利。模仿学习特别适用于高度专业和技术性强的小提琴演奏,但在将专家演示引入动态运动原语(Dynamic Movement Primitive,DMP)的过程中,模糊性问题尤为突出,例如换弦角度的不确定性。传统的换弦角度测量方法如物理测量会有很大的误差且无法泛化,为了解决这一问题,提出了一种名为基于模糊和PCA的动态运动原语(Fuzzy Dynamic Movement Primitive for Teaching,T-FDMP)的新模型。该模型基于二型模糊模型和主成分分析(Principal Component Analysis,PCA)进行构建,使用主成分分析法(PCA)得到的特征变量(运弓角度)作为隶属度函数(琴弦角度)的输入进行学习,同时构建了一个专业级的音乐演奏行为数据库。仿生实验结果证明,所提出的T-FDMP模型能够以高精度控制机器人进行小提琴演奏,还为模仿学习在其他高度专业和技术性强的领域的应用提供了新的研究方向。展开更多
基金Project(2007AA04Z162) supported by the National High-Tech Research and Development Program of ChinaProjects(2006T089, 2009T062) supported by the University Innovation Team in the Educational Department of Liaoning Province, China
文摘In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.
文摘Fuzzy technology is a newly developed discipline based on fuzzy mathematics. In the recent years, it has been successfully applied into many areas, such as process control, diagnosis, evaluation, decision making and scheduling, especially in simulation where accurate mathematical models can not or very hard be established. In this paper, to meet the demands of fuzzy simulation, two fuzzy nets will first be presented, which are quite suitable for modeling the parallel or concurrent systems with fuzzy behavior. Then, a concept of active simulation will be introduced, in which the simulation model not only can show its fuzzy behavior, but also has a certain ability which can actively perform many very useful actions, such as automatic warning, realtime monitoring, simulation result checking, simulation model self-adapting, error recovery, simulating path tracing, system states inspecting and exception handling, by a unified approach while some specified events occur. The simulation model described by this powerful simulation modeling tool is concurrently driven by a network interpreter and an event monitor that all can be implemented by software or hardware. Besides, some interesting applications are given in the paper.
基金Supported by the National Creative Research Groups Science Foundation of P.R. China (NCRGSFC: 60421002) and National High Technology Research and Development Program of China (863 Program) (2006AA04 Z182)
文摘近年来,模仿学习被广泛应用于机器人领域,并展示出巨大的潜力。同时关注到智能系统在教育领域的应用越来越多样化,将机器人合理地应用到教学中可以提升教学效果,如果机器人可以教授一些专业技巧,如演奏乐器,可以为学生和人类老师都提供很大的便利。模仿学习特别适用于高度专业和技术性强的小提琴演奏,但在将专家演示引入动态运动原语(Dynamic Movement Primitive,DMP)的过程中,模糊性问题尤为突出,例如换弦角度的不确定性。传统的换弦角度测量方法如物理测量会有很大的误差且无法泛化,为了解决这一问题,提出了一种名为基于模糊和PCA的动态运动原语(Fuzzy Dynamic Movement Primitive for Teaching,T-FDMP)的新模型。该模型基于二型模糊模型和主成分分析(Principal Component Analysis,PCA)进行构建,使用主成分分析法(PCA)得到的特征变量(运弓角度)作为隶属度函数(琴弦角度)的输入进行学习,同时构建了一个专业级的音乐演奏行为数据库。仿生实验结果证明,所提出的T-FDMP模型能够以高精度控制机器人进行小提琴演奏,还为模仿学习在其他高度专业和技术性强的领域的应用提供了新的研究方向。