期刊文献+

基于Fuzzy-CMAC的人体假肢系统智能控制方法研究 被引量:5

Study on Intelligent Control of Human Body Prosthetic Leg Based on Fuzzy-CMAC
在线阅读 下载PDF
导出
摘要 由于需要适应患者的参数个性化与步速变化,人体大腿假肢系统参数具有模型非线性与参数不确定性等复杂系统特性,因此需要寻求有效的智能控制方法。以一种自制的液压型智能大腿假肢结构为例,首先建立基于非线性阻尼控制参数与人体髋关节力矩的人机动力学模型,根据智能假腿的复杂系统特性设计一种PD-FCMAC逆动态复合控制模型,实现膝关节轨迹跟踪控制。以所建立的假腿实验样机动力学模型为对象,对PD-FCMAC方法进行实验仿真。实验结果表明,大腿假肢膝关节可以在约0.5 s时间内跟踪好目标曲线,具有良好的实时性与精度,且获得的膝关节阻力矩结果与膝关节角度曲线的循环交变规律一致。 To meet the need of parameter personalization and walking speed variance of patients,leg prostheses have parameter systems with complex features including nonlinearity and parameter uncertainty,however conventional mathematic models can not meet the demand for the actual control because the IPL knee torque is indirectly caused by the nonlinear damping at the knee joint.Hence intelligent prosthetic leg(IPL) system is required.In this work a dynamic model of self-made hydraulic IPL with the nonlinear damper control parameters and hip torque was established,and an inverse dynamic compound controller of PD-FCMAC for tracking the knee swing was designed.A case simulation showed that an arbitrary trajectory could be tracked in less than 5 s,which proved that the designed controller had high real-time performance with good precision.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2012年第1期83-88,共6页 Chinese Journal of Biomedical Engineering
基金 上海市重点科技攻关项目(11441900502)
关键词 智能控制 大腿假肢 动力学模型 模糊CMAC控制器 intelligent control prosthetic leg dynamic model Fuzzy-CMAC controller
作者简介 通信作者。E—mail:yhl98@hotmail.com
  • 相关文献

参考文献16

  • 1Kalanovic VD,Popovic VD,Skaug D,et al. Feedback error learning neural network for trans-femoral prosthesis[J]. IEEE Transactions on Rehabilitation Engineering,2000,8 (1):71-80.
  • 2金德闻,王人成.人工智能假肢[J].中国临床康复,2002,6(20):2994-2995. 被引量:24
  • 3王斌锐,徐心和.智能仿生腿的研究[J].控制与决策,2004,19(2):121-127. 被引量:22
  • 4Rao DH,Bitner D,Gupta MM,et al.Feedback-error learning scheme using recurrent neural networks for nonlinear dynamic systems[C]//Rao DH eds. IEEE World Congress on Computational Intelligence.Orlando,USA:IEEE Press,1994:175-180.
  • 5喻洪流,钱省三,沈凌,王殊轶.微电脑控制膝关节假肢[J].中华物理医学与康复杂志,2007,29(9):642-644. 被引量:10
  • 6Kaufman KR,Levine JA,Brey RH,et al.Gait and balance of trans-femoral amputees using passive mechanical and microprocessor-controlled prosthetic knees[J].Gait & Posture,2007,6 (4):489-493.
  • 7Koopman BF.Prosthetic knee stability during the push-off phase of walking experimental findings[C]//Koopman BF,eds.18th Annual International Conference of the IEEE. Amsterdam,IEEE,1996:471-472.
  • 8Popovic D,Tomovic R,Tepavac D,et al. Control aspects an active A/K prosthesis[J].Journal of Man-Machine Studies,1991,35(6):751-767.
  • 9Canina M,Vicentini F,Rovetta A,et al. Innovative Design Development And Prototyping Of Knee Prosthesis[C].//Canina M,eds.Proceedings of ROBTEP 2004,Automation/Robotic in Theory and Practice.Vysn Ruzbachy:Springer Press,2004:80-88.
  • 10Hafner BJ,Willingham LL,Buell NC,et al. Evaluation of function,performance,and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee[J].Journal of Biomechanics,2007,88 (2):207-217.

二级参考文献42

  • 1[1]Hale S A.The effect of walking speed on the joint displacement patterns and forces and moments acting on the above-knee amputee prosthetic leg[J].J of Prosthetics and Orthotics,1991,3(2):59-78.
  • 2[3]Geraldo R.An efficient low cost prosthetic structural system[J].J of Prosthetics and Orthotics,1989,1(2):86-91.
  • 3[5]D Datta, J Howitt.Conventional versus microchip controlled pneumatic swing phase control for trans-femoral amputees: User′s edict[J].Prosthetics and Orthotics Int,1998,22(1):129-135.
  • 4[6]A E Patla, D A Stacey.Artificial neural network model for the generation of muscle activation patterns for human locomotion[J].J of Electromyography and Kinesiology,2001,11(2):19-30.
  • 5[8]Robert F,James J.Mechanical and metabolic work of persons with lower-extremity amputations walking with titanium and stainless steel prostheses: A preliminary study[J].J of Prosthetics and Orthotics,1999,11(2):38-42.
  • 6[9]James W, Stuart H.Technical note: Beyond the four-bar knee[J].J of Prosthetics and Orthotics,1998,10(3):77-80.
  • 7[10]Steven A, Dudley S, Jack E.The influence of four-bar linkage knees on prosthetic swing-phase floor clearance[J].J of Prosthetics and Orthotics,1996,8(2):34-40.
  • 8[11]James W.Theory of integrated balance: The lower limb amputee[J].J of Prosthetics and Orthotics,1998,10(2):42-44.
  • 9[13]Hank White, Keith, Sam.Kinematic and kinetic data of two prosthetic designs: A case study[J].J of Prosthetics and Orthotics,2000,12(4):12.
  • 10[14]Jeffrey L, David H.Case study forum: gait comparison of two Prosthetic knee units[J].J of Prosthetics and Orthotics,1997,9(4):168-173.

共引文献45

同被引文献28

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部