In order to describe and control the stress distribution and total deformation of bladed disk assemblies used in the aeroengine, a highly efficient and precise method of probabilistic analysis which is called extremum...In order to describe and control the stress distribution and total deformation of bladed disk assemblies used in the aeroengine, a highly efficient and precise method of probabilistic analysis which is called extremum response surface method(ERSM) is produced based on the previous deterministic analysis results with the finite element model(FEM). In this work, many key nonlinear factors, such as the dynamic feature of the temperature load, the centrifugal force and the boundary conditions, are taken into consideration for the model. The changing patterns with time of bladed disk assemblies about stress distribution and total deformation are obtained during the deterministic analysis, and at the same time, the largest deformation and stress nodes of bladed disk assemblies are found and taken as input target of probabilistic analysis in a scientific and reasonable way. Not only their reliability, historical sample, extreme response surface(ERS) and the cumulative probability distribution function but also their sensitivity and effect probability are obtained. Main factors affecting stress distribution and total deformation of bladed disk assemblies are investigated through the sensitivity analysis of the model. Finally, compared with the response surface method(RSM) and the Monte Carlo simulation(MCS), the results show that this new approach is effective.展开更多
为进一步理解和掌握变压器绕组的振动特性,通过建立实体变压器的三维有限元分析模型,使用超弹性Mooney-Rivlin模型模拟变压器绕组垫块的非线性材料特性,基于"磁–机械"耦合场理论实现了变压器运行过程中由电动力激励到绕组振...为进一步理解和掌握变压器绕组的振动特性,通过建立实体变压器的三维有限元分析模型,使用超弹性Mooney-Rivlin模型模拟变压器绕组垫块的非线性材料特性,基于"磁–机械"耦合场理论实现了变压器运行过程中由电动力激励到绕组振动响应的全过程仿真分析,得到了变压器绕组在电磁力激励下正常与松动状态下的振动特性。对某35 k V电力变压器振动特性的测试结果表明,变压器绕组振动波形的计算结果与直接布置于绕组上的光振传感器的测试结果吻合良好,验证了计算结果的正确性。此外,变压器绕组松动即预紧力的下降相当于垫块材料刚度的增加,此时,绕组振动信号中的100 Hz分量及其倍频均随之增大,但增幅各异。研究结果可为变压器绕组结构优化及绕组变形振动检测法提供重要依据。展开更多
基金Projects(51375032,51175017,51245027)supported by the National Natural Science Foundation of China
文摘In order to describe and control the stress distribution and total deformation of bladed disk assemblies used in the aeroengine, a highly efficient and precise method of probabilistic analysis which is called extremum response surface method(ERSM) is produced based on the previous deterministic analysis results with the finite element model(FEM). In this work, many key nonlinear factors, such as the dynamic feature of the temperature load, the centrifugal force and the boundary conditions, are taken into consideration for the model. The changing patterns with time of bladed disk assemblies about stress distribution and total deformation are obtained during the deterministic analysis, and at the same time, the largest deformation and stress nodes of bladed disk assemblies are found and taken as input target of probabilistic analysis in a scientific and reasonable way. Not only their reliability, historical sample, extreme response surface(ERS) and the cumulative probability distribution function but also their sensitivity and effect probability are obtained. Main factors affecting stress distribution and total deformation of bladed disk assemblies are investigated through the sensitivity analysis of the model. Finally, compared with the response surface method(RSM) and the Monte Carlo simulation(MCS), the results show that this new approach is effective.
文摘为进一步理解和掌握变压器绕组的振动特性,通过建立实体变压器的三维有限元分析模型,使用超弹性Mooney-Rivlin模型模拟变压器绕组垫块的非线性材料特性,基于"磁–机械"耦合场理论实现了变压器运行过程中由电动力激励到绕组振动响应的全过程仿真分析,得到了变压器绕组在电磁力激励下正常与松动状态下的振动特性。对某35 k V电力变压器振动特性的测试结果表明,变压器绕组振动波形的计算结果与直接布置于绕组上的光振传感器的测试结果吻合良好,验证了计算结果的正确性。此外,变压器绕组松动即预紧力的下降相当于垫块材料刚度的增加,此时,绕组振动信号中的100 Hz分量及其倍频均随之增大,但增幅各异。研究结果可为变压器绕组结构优化及绕组变形振动检测法提供重要依据。