Objective To explore the sequential effects of hypoxic exercising on miR-27/PPARγand lipid metabolism targetgene and protein expression levels in the obesity rats’liver.Methods 13-week-old male diet-induced obesity ...Objective To explore the sequential effects of hypoxic exercising on miR-27/PPARγand lipid metabolism targetgene and protein expression levels in the obesity rats’liver.Methods 13-week-old male diet-induced obesity rats were randomlydivided into three groups(n=10):normal oxygen concentration quiet group(N),hypoxia quiet group(H),hypoxic exercise group(HE).Exercise training on the horizontal animal treadmill for 1 h/d,5 d/week for a total of 4 week,and the intensity of horizontaltreadmill training was 20 m/min(hypoxic concentration was 13.6%).Comparison of the weights of perirenal fat and epididymal fat in rats across different groups and calculation of Lee’s index based on body weight and body length of rats in each group were done.And the serum concentrations of total cholesterol(TC),triglyceride(TG),low density lipoprotein cholesterol(LDL-C),high-densitylipoprotein cholesterol(HDL-C)levels were detected.RT-PCR and Western Blot were used to detect the levels of miR-27,PPARγ,CYP7A1 and CD36.Results Hypoxic exercise decreased the expression levels of miR-27 in the obese rats’liver,however,theexpression level of PPARγwas gradually increased.The expression levels of miR-27 in HE group were significantly lower than Ngroup(P<0.05).The expression levels of PPARγmRNA in N group were significantly lower than H group(P<0.05),especially lowerthan HE group(P<0.01).The protein expression of PPARγprotein in N group was significantly lower than that other groups(P<0.01).The expression of lipid metabolism-related genes and proteins increased in the obese rats’liver.The expression of CYP7A1mRNA in N group was significantly lower than H group(P<0.05),especially lower than HE group(P<0.01).The expression ofCYP7A1 protein in the obese rats’liver in N group was extremely lower than H group and HE group(P<0.01).The proteinexpression of CD36 in N group was significantly lower than that in HE group(P<0.05).Hypoxia exercise improved the relatedphysiological and biochemical indexes of lipid metabolism disorder.The perirenal fat weight of obese rats in HE group wasextremely lower than N group and H group(P<0.01),and the perirenal fat weight in N group was significantly higher than H group(P<0.05).The epididymal fat weight in N group was significantly higher than H group(P<0.05),and extremely higher than HEgroup(P<0.01).The Lee’s index in HE group was extremely lower than N group and H group(P<0.01).The serum concentration ofTC in obese rats in HE group was extremely lower than N group and H group(P<0.01).The serum concentration of TG in HE groupwas extremely lower than N group and H group(P<0.01).The serum concentration of LDL-C in N group was extremely higher thanHE group(P<0.01).The serum concentration of HDL-C in N group was extremely lower than H group(P<0.01).Conclusion Hypoxiaand hypoxia exercise may negatively regulate the levels of PPARγby inhibiting miR-27 in the obese rats’liver,thereby affecting theexpression of downstream target genes CYP7A1 and CD36,and promoting cholesterol,fatty acid oxidation and HDL-C transport inthe liver,and ultimately the lipid levels in obese rats were improved.The effect of hypoxia exercise on improving blood lipid isbetter than simple hypoxia intervention.展开更多
文摘Objective To explore the sequential effects of hypoxic exercising on miR-27/PPARγand lipid metabolism targetgene and protein expression levels in the obesity rats’liver.Methods 13-week-old male diet-induced obesity rats were randomlydivided into three groups(n=10):normal oxygen concentration quiet group(N),hypoxia quiet group(H),hypoxic exercise group(HE).Exercise training on the horizontal animal treadmill for 1 h/d,5 d/week for a total of 4 week,and the intensity of horizontaltreadmill training was 20 m/min(hypoxic concentration was 13.6%).Comparison of the weights of perirenal fat and epididymal fat in rats across different groups and calculation of Lee’s index based on body weight and body length of rats in each group were done.And the serum concentrations of total cholesterol(TC),triglyceride(TG),low density lipoprotein cholesterol(LDL-C),high-densitylipoprotein cholesterol(HDL-C)levels were detected.RT-PCR and Western Blot were used to detect the levels of miR-27,PPARγ,CYP7A1 and CD36.Results Hypoxic exercise decreased the expression levels of miR-27 in the obese rats’liver,however,theexpression level of PPARγwas gradually increased.The expression levels of miR-27 in HE group were significantly lower than Ngroup(P<0.05).The expression levels of PPARγmRNA in N group were significantly lower than H group(P<0.05),especially lowerthan HE group(P<0.01).The protein expression of PPARγprotein in N group was significantly lower than that other groups(P<0.01).The expression of lipid metabolism-related genes and proteins increased in the obese rats’liver.The expression of CYP7A1mRNA in N group was significantly lower than H group(P<0.05),especially lower than HE group(P<0.01).The expression ofCYP7A1 protein in the obese rats’liver in N group was extremely lower than H group and HE group(P<0.01).The proteinexpression of CD36 in N group was significantly lower than that in HE group(P<0.05).Hypoxia exercise improved the relatedphysiological and biochemical indexes of lipid metabolism disorder.The perirenal fat weight of obese rats in HE group wasextremely lower than N group and H group(P<0.01),and the perirenal fat weight in N group was significantly higher than H group(P<0.05).The epididymal fat weight in N group was significantly higher than H group(P<0.05),and extremely higher than HEgroup(P<0.01).The Lee’s index in HE group was extremely lower than N group and H group(P<0.01).The serum concentration ofTC in obese rats in HE group was extremely lower than N group and H group(P<0.01).The serum concentration of TG in HE groupwas extremely lower than N group and H group(P<0.01).The serum concentration of LDL-C in N group was extremely higher thanHE group(P<0.01).The serum concentration of HDL-C in N group was extremely lower than H group(P<0.01).Conclusion Hypoxiaand hypoxia exercise may negatively regulate the levels of PPARγby inhibiting miR-27 in the obese rats’liver,thereby affecting theexpression of downstream target genes CYP7A1 and CD36,and promoting cholesterol,fatty acid oxidation and HDL-C transport inthe liver,and ultimately the lipid levels in obese rats were improved.The effect of hypoxia exercise on improving blood lipid isbetter than simple hypoxia intervention.