期刊文献+
共找到267篇文章
< 1 2 14 >
每页显示 20 50 100
Improved particle swarm optimization based on particles' explorative capability enhancement 被引量:1
1
作者 Yongjian Yang Xiaoguang Fan +3 位作者 Zhenfu Zhuo Shengda Wang Jianguo Nan Wenkui Chu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第4期900-911,共12页
Accelerating the convergence speed and avoiding the local optimal solution are two main goals of particle swarm optimization(PSO). The very basic PSO model and some variants of PSO do not consider the enhancement of... Accelerating the convergence speed and avoiding the local optimal solution are two main goals of particle swarm optimization(PSO). The very basic PSO model and some variants of PSO do not consider the enhancement of the explorative capability of each particle. Thus these methods have a slow convergence speed and may trap into a local optimal solution. To enhance the explorative capability of particles, a scheme called explorative capability enhancement in PSO(ECE-PSO) is proposed by introducing some virtual particles in random directions with random amplitude. The linearly decreasing method related to the maximum iteration and the nonlinearly decreasing method related to the fitness value of the globally best particle are employed to produce virtual particles. The above two methods are thoroughly compared with four representative advanced PSO variants on eight unimodal and multimodal benchmark problems. Experimental results indicate that the convergence speed and solution quality of ECE-PSO outperform the state-of-the-art PSO variants. 展开更多
关键词 convergence speed particle swarm optimization(PSO) explorative capability enhancement solution quality
在线阅读 下载PDF
A novel particle swarm optimizer without velocity:Simplex-PSO 被引量:5
2
作者 肖宏峰 谭冠政 《Journal of Central South University》 SCIE EI CAS 2010年第2期349-356,共8页
A simplex particle swarm optimization(simplex-PSO) derived from the Nelder-Mead simplex method was proposed to optimize the high dimensionality functions.In simplex-PSO,the velocity term was abandoned and its referenc... A simplex particle swarm optimization(simplex-PSO) derived from the Nelder-Mead simplex method was proposed to optimize the high dimensionality functions.In simplex-PSO,the velocity term was abandoned and its reference objectives were the best particle and the centroid of all particles except the best particle.The convergence theorems of linear time-varying discrete system proved that simplex-PSO is of consistent asymptotic convergence.In order to reduce the probability of trapping into a local optimal value,an extremum mutation was introduced into simplex-PSO and simplex-PSO-t(simplex-PSO with turbulence) was devised.Several experiments were carried out to verify the validity of simplex-PSO and simplex-PSO-t,and the experimental results confirmed the conclusions:(1) simplex-PSO-t can optimize high-dimension functions with 200-dimensionality;(2) compared PSO with chaos PSO(CPSO),the best optimum index increases by a factor of 1×102-1×104. 展开更多
关键词 Nelder-Mead simplex method particle swarm optimizer high-dimension function optimization convergence analysis
在线阅读 下载PDF
Multilayered feed forward neural network based on particle swarmopti mizer algorithm
3
作者 潘峰 陈杰 +1 位作者 涂序彦 付继伟 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期682-686,共5页
BP is a commonly used neural network training method, which has some disadvantages, such as local minima, sensitivity of initial value of weights, total dependence on gradient information. This paper presents some met... BP is a commonly used neural network training method, which has some disadvantages, such as local minima, sensitivity of initial value of weights, total dependence on gradient information. This paper presents some methods to train a neural network, including standard particle swarm optimizer (PSO), guaranteed convergence particle swarm optimizer (GCPSO), an improved PSO algorithm, and GCPSO-BP, an algorithm combined GCPSO with BP. The simulation results demonstrate the effectiveness of the three algorithms for neural network training. 展开更多
关键词 BP PSO guaranteed convergence particle swarm optimizer (GCPSO) GCPSO-BP.
在线阅读 下载PDF
快速综合学习粒子群优化算法 被引量:3
4
作者 杨帆 乌景秀 +2 位作者 范子武 李子祥 朱沈涛 《水利水电技术(中英文)》 北大核心 2025年第2期30-44,共15页
【目的】粒子群优化算法在反问题求解、函数优化、数据挖掘、机器学习等研究领域广泛应用,但在求解复杂多峰问题时仍存在过早收敛的问题。为了提升粒子群算法在处理复杂多峰问题求解速度和精度,提出了快速综合学习粒子群优化算法(Fast C... 【目的】粒子群优化算法在反问题求解、函数优化、数据挖掘、机器学习等研究领域广泛应用,但在求解复杂多峰问题时仍存在过早收敛的问题。为了提升粒子群算法在处理复杂多峰问题求解速度和精度,提出了快速综合学习粒子群优化算法(Fast Comprehensive Learning Particle Swarm Optimization,FCLPSO)。【方法】FCLPSO算法引入粒子学习概率、个体影响概率、群体影响概率三个属性,表征每个粒子个体“与生俱来”的不同学习能力,同时新增强化学习、粒子重生等策略,提升算法收敛速度以及监测并跳出“伪收敛”状态。选用14个标准测试函数以及6种常用粒子群变体算法开展FCLPSO算法性能分析。【结果】结果显示:在收敛性方面,FCLPSO算法平均排名为1.86,排名第一次数为7次、排名第二的次数为2次、排名最后次数为0,最终综合排名第一;在鲁棒性方面,FCLPSO算法成功率排名第一,平均值为94.3%,14个测试函数中最低成功率为73.3%;达到阈值所需适应度评价次数最少,平均值40817,较其他算法评价次数少一半。【结论】结果表明:FCLPSO算法在收敛精度、收敛速度和鲁棒性方面排名综合第一,对复杂多峰问题求解更具优势,可为工程应用中复杂优化问题求解提供重要手段。 展开更多
关键词 粒子群优化算法 强化学习 粒子属性 粒子重生 过早收敛 影响因素 人工智能 全局搜索
在线阅读 下载PDF
采用动态种群策略的多目标粒子群优化算法
5
作者 杜睿山 井远光 +3 位作者 付晓飞 孟令东 张豪鹏 王紫珊 《吉林大学学报(理学版)》 北大核心 2025年第3期845-854,共10页
针对多目标粒子群优化算法中多样性和收敛性难以平衡的问题,提出一种基于动态种群的多目标粒子群优化算法.该算法种群数量的增加或减少取决于档案中的资源,从而调节种群数量.一方面,通过基于网格技术的局部扰动添加粒子,以增加粒子的局... 针对多目标粒子群优化算法中多样性和收敛性难以平衡的问题,提出一种基于动态种群的多目标粒子群优化算法.该算法种群数量的增加或减少取决于档案中的资源,从而调节种群数量.一方面,通过基于网格技术的局部扰动添加粒子,以增加粒子的局部搜索能力,提高算法的多样性;另一方面,为防止种群规模过度增长,利用非支配排序和种群密度控制种群规模,以加快算法搜索进度,避免过早收敛.选取5种对比算法在测试函数上进行实验,实验结果表明,该算法具有明显的多样性和收敛性优势. 展开更多
关键词 动态种群 粒子群优化 多目标优化 多样性 收敛性
在线阅读 下载PDF
计及CCM和改进GRA的PSO-BiLSTM光伏出力预测模型 被引量:1
6
作者 高胜强 张琳 +5 位作者 王海鹏 宋煜 燕灏 刘紫凝 周维维 卜帅羽 《电源技术》 北大核心 2025年第4期869-882,共14页
为了显著提高光伏电站输出功率的预测精度,提出了一种基于CCM-IGRA-PSO-BiLSTM的光伏出力智能预测模型。首先,采用收敛交叉映射(convergent cross mapping,CCM)算法提取影响光伏出力的关键气象要素,并将其作为相似日选取的重要评判指标... 为了显著提高光伏电站输出功率的预测精度,提出了一种基于CCM-IGRA-PSO-BiLSTM的光伏出力智能预测模型。首先,采用收敛交叉映射(convergent cross mapping,CCM)算法提取影响光伏出力的关键气象要素,并将其作为相似日选取的重要评判指标和后续搭建的预测模型的重要输入变量;其次,运用基于熵权法的改进灰色关联分析法(improved grey relation analysis,IGRA)筛选与待预测日气象特征相近的历史相似日;接下来,分别将选定相似日的关键气象参数和光伏发电序列作为训练样本集的输入和输出变量,使用粒子群优化算法(particle swarm optimization,PSO)确定双向长短期记忆网络(bidirectional long short-term memory,Bi-LSTM)的最优超参数组合,建立待预测日的高精度光伏出力预测模型;最后,以云南省某光伏电站为研究对象,建立四个季节的典型日的日前光伏出力组合预测模型,采用平均绝对误差(mean absolute error,MAE)、平均绝对百分比误差(mean absolute percentage error,MAPE)和均方根误差(root mean square error,RMSE)作为模型性能的评价指标。结果显示,以夏季的晴天天气为例,所提模型的MAPE、MAE和RMSE分别达到了0.38%、0.06和0.07 MW,均优于基准模型,可为电站制定合理的生产计划和电力市场参与策略提供科学的指导和支持。 展开更多
关键词 光伏出力预测 粒子群优化 收敛交叉映射 改进的灰色关联分析法 双向长短期记忆网络
在线阅读 下载PDF
临时天窗下重载铁路列车运行调整两阶段优化研究
7
作者 白治翔 冯琳 +1 位作者 李博 周进 《铁道运输与经济》 北大核心 2025年第5期131-140,共10页
临时天窗的开始时间、地点及持续时间具有不确定性,短时间制定科学合理的列车运行调整方案难度较大,为降低重载铁路开设临时天窗造成的不良影响,开展临时天窗下重载铁路列车运行调整两阶段优化研究。定义多个优化参数,基于两阶段法,构... 临时天窗的开始时间、地点及持续时间具有不确定性,短时间制定科学合理的列车运行调整方案难度较大,为降低重载铁路开设临时天窗造成的不良影响,开展临时天窗下重载铁路列车运行调整两阶段优化研究。定义多个优化参数,基于两阶段法,构建自主两阶段优化模型。第一阶段自主列车合并模型M1,通过定义天窗影响度,量化天窗影响,自主决策列车合并。第二阶段临时天窗及列车运行同步调整模型M2,接收第一阶段传递的列车信息,基于实时调整后的天窗,调整列车到发时刻。以某重载铁路为例,验证模型的有效性和求解算法的适用性,并基于编程软件编写程序,自动绘制调整后的列车运行图,从而为重载铁路调度指挥人员及施工管理者提供决策参考。 展开更多
关键词 重载铁路 列车运行调整 临时天窗 两阶段优化 收敛粒子群算法
在线阅读 下载PDF
基于改进T分布烟花-粒子群算法的AUV全局路径规划 被引量:1
8
作者 刘志华 张冉 +2 位作者 郝梦男 安凯晨 陈嘉兴 《电子学报》 EI CAS CSCD 北大核心 2024年第9期3123-3134,共12页
针对传统粒子群算法在处理自主水下机器人(Autonomous Underwater Vehicle,AUV)全局路径规划时面临的寻优时间长、能耗高的问题,本文提出一种改进的T分布烟花-粒子群算法(T-distribution Fireworks-Particle Swarm Optimization Algorit... 针对传统粒子群算法在处理自主水下机器人(Autonomous Underwater Vehicle,AUV)全局路径规划时面临的寻优时间长、能耗高的问题,本文提出一种改进的T分布烟花-粒子群算法(T-distribution Fireworks-Particle Swarm Optimization Algorithm,TFWA-PSO),该算法融合了烟花算法的高效全局搜索能力和粒子群算法的快速局部寻优特性.在变异阶段,提出自适应T分布变异来扩大搜索范围,并在理论上证明了该变异方式能够使个体在局部最优解附近增强搜索能力.在选择阶段提出了适应度选择策略,淘汰适应度差的个体,解决了传统烟花算法易丢失优秀个体的问题,并对改进的T分布烟花算法与传统烟花算法的收敛速度进行对比.将改进算法的爆炸操作、变异操作和选择策略融合到粒子群算法中,对粒子群算法的速度更新公式进行了改进,同时从理论上对所改进的算法进行了收敛性证明.仿真实验结果表明,TFWA-PSO能够有效规划出一条最短路径,同时与给定的智能优化算法相比,TFWA-PSO在寻找最优路径的时间上平均降低了24.72%,能耗平均降低了17.33%,路径长度平均降低了16.96%. 展开更多
关键词 自主水下机器人 全局路径规划 烟花算法 粒子群算法 自适应T分布变异 收敛性证明
在线阅读 下载PDF
陷阱标记联合懒蚂蚁的自适应粒子群优化算法
9
作者 张伟 蒋岳峰 《系统仿真学报》 CAS CSCD 北大核心 2024年第7期1631-1642,共12页
为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷... 为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷阱标记策略为粒子群提供动态速度增量,使其摆脱最优解的束缚。利用懒蚂蚁寻优策略多样化粒子速度,提升种群多样性。通过惯性认知策略在速度更新中引入历史位置,增加粒子的路径多样性和提升粒子的探索性能,使粒子更有效地避免陷入新的局部最优。理论证明了引入历史位置的粒子群算法的收敛性。仿真实验结果表明,所提算法不仅能有效解决粒子群已陷入局部最优和过早收敛的问题,且与其他算法相比,具有较快的收敛速度和较高的寻优精度。 展开更多
关键词 粒子群优化算法 懒蚂蚁 陷阱标记 局部最优 过早收敛
在线阅读 下载PDF
多目标粒子群优化算法及其应用研究综述 被引量:19
10
作者 叶倩琳 王万良 王铮 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第6期1107-1120,1232,共15页
现有研究较少涵盖最先进的多目标粒子群优化(MOPSO)算法.本研究介绍了多目标优化问题(MOPs)的研究背景,阐述了MOPSO的基本理论.根据特征将其分为基于Pareto支配、基于分解和基于指标的3类MOPSO算法,介绍了现有的经典算法.介绍相关评价指... 现有研究较少涵盖最先进的多目标粒子群优化(MOPSO)算法.本研究介绍了多目标优化问题(MOPs)的研究背景,阐述了MOPSO的基本理论.根据特征将其分为基于Pareto支配、基于分解和基于指标的3类MOPSO算法,介绍了现有的经典算法.介绍相关评价指标,并选取7个有代表性的算法进行性能分析.实验结果展示了传统MOPSO和3类改进的MOPSO算法各自的优势与不足,其中,基于指标的MOPSO在收敛性和多样性方面表现较优.对MOPSO算法在生产调度、图像处理和电力系统等领域的应用进行简要介绍.并探讨了MOPSO算法用于求解复杂优化问题的局限性及未来的研究方向. 展开更多
关键词 粒子群优化 多目标优化 PARETO解集 收敛性 多样性
在线阅读 下载PDF
梯度提升最小二乘支持向量回归的压电执行器磁滞特性建模
11
作者 王建成 李强亚 +2 位作者 刘涛 谭永红 阎帅 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第9期1692-1697,共6页
针对用于精密运动定位的压电执行器具有磁滞效应的问题,本文提出一种基于梯度提升最小二乘支持向量回归(GB-LSSVR)的建模方法.首先,通过引入磁滞算子构造拓展的输入空间,将磁滞的多值映射转换为一对一映射.然后,建立基于GB-LSSVR的磁滞... 针对用于精密运动定位的压电执行器具有磁滞效应的问题,本文提出一种基于梯度提升最小二乘支持向量回归(GB-LSSVR)的建模方法.首先,通过引入磁滞算子构造拓展的输入空间,将磁滞的多值映射转换为一对一映射.然后,建立基于GB-LSSVR的磁滞模型,设计可保证收敛粒子群算法(GCPSO)对GB-LSSVR模型参数进行优化.最后,将所提出方法用于实际预测一个压电执行器的位移.结果表明,该方法相对于经典的最小二乘支持向量回归(LSSVR)和截断最小二乘支持向量回归(T-LSSVR)算法,能得到更加准确的结果. 展开更多
关键词 压电执行器 磁滞效应 磁滞算子 最小二乘支持向量机 可保证收敛粒子群算法 梯度提升
在线阅读 下载PDF
自适应变异粒子群算法 被引量:30
12
作者 周利军 彭卫 +2 位作者 邹芳 刘宇荧 李莉 《计算机工程与应用》 CSCD 北大核心 2016年第7期50-55,149,共7页
为了解决粒子群种群多样性低、容易陷入局部最优的缺点,结合最优粒子和其他粒子在种群中的不同作用,给出了一种自适应变异粒子群算法。算法中最优粒子根据种群进化程度,自适应调整自身搜索邻域大小,增强种群的局部搜索能力;对非最优粒... 为了解决粒子群种群多样性低、容易陷入局部最优的缺点,结合最优粒子和其他粒子在种群中的不同作用,给出了一种自适应变异粒子群算法。算法中最优粒子根据种群进化程度,自适应调整自身搜索邻域大小,增强种群的局部搜索能力;对非最优粒子的位置进行小概率的随机初始化,当其速度为零时,速度自适应变化,以便增强种群多样性和全局搜索能力。仿真实验中,将算法应用于6个典型复杂函数优化问题,并与其他变异粒子群算法比较,结果表明,增强种群多样性的同时提高了局部搜索能力。 展开更多
关键词 粒子群算法 局部收敛 自适应 变异操作 群体智能
在线阅读 下载PDF
一种多尺度协同变异的粒子群优化算法 被引量:48
13
作者 陶新民 刘福荣 +1 位作者 刘玉 童智靖 《软件学报》 EI CSCD 北大核心 2012年第7期1805-1815,共11页
为了改善粒子群算法易早熟收敛、精度低等缺点,提出一种多尺度协同变异的粒子群优化算法,并证明了该算法以概率1收敛到全局最优解.算法采用多尺度高斯变异机制实现局部解逃逸.在算法初期阶段,利用大尺度变异及均匀变异算子实现全局最优... 为了改善粒子群算法易早熟收敛、精度低等缺点,提出一种多尺度协同变异的粒子群优化算法,并证明了该算法以概率1收敛到全局最优解.算法采用多尺度高斯变异机制实现局部解逃逸.在算法初期阶段,利用大尺度变异及均匀变异算子实现全局最优解空间的快速定位;随着适应值的提升,变异尺度随之降低;最终在算法后期阶段,利用小尺度变异算子完成局部精确解空间的搜索.将算法应用6个典型复杂函数优化问题,并同其他带变异操作的PSO算法比较,结果表明,该算法在收敛速度及稳定性上有显著提高. 展开更多
关键词 粒子群算法 早熟收敛 多尺度 协同变异 适应度
在线阅读 下载PDF
自适应扩散混合变异机制微粒群算法 被引量:50
14
作者 吕艳萍 李绍滋 +2 位作者 陈水利 郭文忠 周昌乐 《软件学报》 EI CSCD 北大核心 2007年第11期2740-2751,共12页
为了避免微粒群算法(panicle swarm optimization,简称PSO)在全局优化中陷入局部极值,分析了标准PSO算法早熟收敛的原因,提出了自适应扩散混合变异机制微粒群算法(InfonnPSO).结合生物群体信息扩散的习性,设计了一个考虑微粒分布和迭代... 为了避免微粒群算法(panicle swarm optimization,简称PSO)在全局优化中陷入局部极值,分析了标准PSO算法早熟收敛的原因,提出了自适应扩散混合变异机制微粒群算法(InfonnPSO).结合生物群体信息扩散的习性,设计了一个考虑微粒分布和迭代次数的函数,自适应调整微粒的"社会认知"能力,提高种群的多样性;模拟了基因自组织和混沌进化规律引入克隆选择使群体最佳微粒gBest实现遗传微变、局部增值,具有变异确定性;利用Logistic序列指导gBest随机漂移,进一步增强逃离局部极值能力.基于种群的随机状态转移过程,证明了新算法具有全局收敛性.与其他几种PSO变种相比,复杂基准函数仿真优化结果表明,新算法收敛速度快,求解精度高,稳定性好,能够有效抑制早熟收敛. 展开更多
关键词 微粒群算法 早熟收敛 信息扩散 克隆选择 Logistic序列
在线阅读 下载PDF
基于自适应搜索中心的骨干粒子群算法 被引量:53
15
作者 王东风 孟丽 赵文杰 《计算机学报》 EI CSCD 北大核心 2016年第12期2652-2667,共16页
该文在对标准粒子群算法(Particle Swarm Optimization,PSO)和骨干粒子群算法(Bare Bones Particle Swarm Optimization,BBPSO)中粒子位置的概率密度函数进行分析比较的基础上,对BBPSO进行了改进,并证明了改进算法以概率1收敛于全局最优... 该文在对标准粒子群算法(Particle Swarm Optimization,PSO)和骨干粒子群算法(Bare Bones Particle Swarm Optimization,BBPSO)中粒子位置的概率密度函数进行分析比较的基础上,对BBPSO进行了改进,并证明了改进算法以概率1收敛于全局最优解.在改进算法中,主要包括如下策略:(1)基于粒子间适应值的差异,提出一种对粒子位置高斯采样均值的自适应调整策略,分析了其作用机理,提出的搜索中心自适应调整策略增加了粒子分布中心的分散度,减缓粒子在中心的聚集趋势;(2)提出了一种"镜像墙"的越界粒子处理方法,该方法能够大幅度地提高算法找到最优解的概率;(3)粒子在不同的进化时期按不同的拓扑结构选取榜样粒子:算法前期主要采用随机结构以增加群体的多样性,算法后期主要采用全局结构以使得搜索更加精细.将该文提出的算法与多种形式的改进PSO,如GPSO(Global PSO)、LPSO(Local PSO)、FIPS(Fully Informed Particle Swarm)、CLPSO(Comprehensive Learning PSO)、HPSO-TVAC(Hierarchical PSO with Time-Varying Acceleration Coefficients)、APSO(Adaptive PSO)、DMS-PSO(Dynamic Multi-Swarm PSO)、OPSO(Orthogonal PSO)、OLPSO(Orthogonal Learning PSO)、ALC-PSO(PSO with an Aging Leader and Challengers)等,以及BBPSO的标准版本和改进版本,如BBJ2(BBPSO with Jumps)、ABPSO(Adaptive BBPSO)、SMA-BBPSO(BBPSO with Scale Matrix Adaptation)等,对CEC2013标准函数进行测试,对实验数据进行非参数检验,结果表明该文改进算法的综合表现要优于其他算法. 展开更多
关键词 粒子群算法 骨干粒子群算法 概率密度 搜索中心 全局收敛
在线阅读 下载PDF
一种惯性权重动态调整的新型粒子群算法 被引量:49
16
作者 刘建华 樊晓平 瞿志华 《计算机工程与应用》 CSCD 北大核心 2007年第7期68-70,共3页
在简要介绍基本PSO算法的基础上,提出了一种根据不同粒子距离全局最优点的距离对基本PSO算法的惯性权重进行动态调整的新型粒子群算法(DPSO),并对新算法进行了描述。以典型优化问题的实例仿真验证了DPSO算法的有效性。
关键词 粒子群算法(PSO算法) 全局最优性 动态粒子群算法(DPSO) 收敛性
在线阅读 下载PDF
基于高斯函数递减惯性权重的粒子群优化算法 被引量:49
17
作者 张迅 王平 +1 位作者 邢建春 杨启亮 《计算机应用研究》 CSCD 北大核心 2012年第10期3710-3712,3724,共4页
为了有效地平衡粒子群优化算法的全局搜索和局部搜索能力,提出了一种基于高斯函数递减惯性权重的粒子群优化(GDIWPSO)算法。此算法利用高斯函数的分布性、局部性等特点,实现了对惯性权重的非线性调整。仿真过程中,首先对测试函数优化以... 为了有效地平衡粒子群优化算法的全局搜索和局部搜索能力,提出了一种基于高斯函数递减惯性权重的粒子群优化(GDIWPSO)算法。此算法利用高斯函数的分布性、局部性等特点,实现了对惯性权重的非线性调整。仿真过程中,首先对测试函数优化以确定惯性权重的递减方式;然后比较了该算法与权重线性递减、凸函数递减、凹函数递减的粒子群算法优化不同测试函数的性能;最后结果表明,提出的算法在搜索能力、收敛速度及执行效率等方面均有很大提高。 展开更多
关键词 粒子群优化 高斯函数 惯性权重 收敛速度 执行效率
在线阅读 下载PDF
一种动态改变惯性权重的粒子群优化算法 被引量:80
18
作者 王启付 王战江 王书亭 《中国机械工程》 EI CAS CSCD 北大核心 2005年第11期945-948,共4页
针对粒子群优化算法的局限性,提出了一种动态改变惯性权重的粒子群算法,在优化迭代过程中,惯性权重值随粒子的位置和目标函数的性质而变化。函数测试表明,改进后的算法使收敛速度显著加快,而且不易陷入局部极值点。
关键词 粒子群 优化算法 动态惯性权重 收敛速度
在线阅读 下载PDF
基于随机过程的PSO收敛性分析 被引量:39
19
作者 金欣磊 马龙华 +1 位作者 吴铁军 钱积新 《自动化学报》 EI CSCD 北大核心 2007年第12期1263-1268,共6页
分析了粒子群优化算法(PS0)的全局收敛性.在已有文献的假设前提下和随机系统理论基础上,对PSO进行算法分析推导,给出了其动力学系统依均方收敛的一个充分条件,从而有效地避免了已有文献基于线性时变离散系统研究PSO收敛性的不足.通过对... 分析了粒子群优化算法(PS0)的全局收敛性.在已有文献的假设前提下和随机系统理论基础上,对PSO进行算法分析推导,给出了其动力学系统依均方收敛的一个充分条件,从而有效地避免了已有文献基于线性时变离散系统研究PSO收敛性的不足.通过对所得的粒子运行轨迹图和已有文献相比较,得到了更好的结果和判据.通过仿真实验分析研究,验证了该结论的有效性. 展开更多
关键词 随机过程 粒子群优化 均方稳定 收敛性
在线阅读 下载PDF
基于改进粒子群算法的天线方向图综合技术 被引量:33
20
作者 金荣洪 袁智皓 +2 位作者 耿军平 范瑜 李佳靖 《电波科学学报》 EI CSCD 北大核心 2006年第6期873-878,共6页
针对基本粒子群算法的早熟收敛、易收敛于局部极值的特点,提出一种改进的粒子群优化算法,采用对全局最佳微扰和惯性权重跳变阈值的设置改善了算法的优化速度和收敛精度。经过对一系列测试函数的计算,证明该方法具有良好的优化效果。最后... 针对基本粒子群算法的早熟收敛、易收敛于局部极值的特点,提出一种改进的粒子群优化算法,采用对全局最佳微扰和惯性权重跳变阈值的设置改善了算法的优化速度和收敛精度。经过对一系列测试函数的计算,证明该方法具有良好的优化效果。最后,给出了该方法应用于阵列天线方向图综合中的模型和仿真实例。 展开更多
关键词 粒子群优化算法 早熟收敛 阵列天线 方向图综合
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部