This paper improves the resampling step of particle filtering(PF) based on a broad interactive genetic algorithm to resolve particle degeneration and particle shortage.For target tracking in image processing,this pa...This paper improves the resampling step of particle filtering(PF) based on a broad interactive genetic algorithm to resolve particle degeneration and particle shortage.For target tracking in image processing,this paper uses the information coming from the particles of the previous fame image and new observation data to self-adaptively determine the selecting range of particles in current fame image.The improved selecting operator with jam gene is used to ensure the diversity of particles in mathematics,and the absolute arithmetical crossing operator whose feasible solution space being close about crossing operation,and non-uniform mutation operator is used to capture all kinds of mutation in this paper.The result of simulating experiment shows that the algorithm of this paper has better iterative estimating capability than extended Kalman filtering(EKF),PF,regularized partide filtering(RPF),and genetic algorithm(GA)-PF.展开更多
The particle filter(PF) algorithm is one of the most commonly used algorithms for maneuvering target tracking. The traditional PF maps from multi-dimensional information to onedimensional information during particle...The particle filter(PF) algorithm is one of the most commonly used algorithms for maneuvering target tracking. The traditional PF maps from multi-dimensional information to onedimensional information during particle weight calculation, and the incorrect transmission of information leads to the fact that the particle prediction information does not match the weight information, and its essence is the reduction of the information entropy of the useful information. To solve this problem, a dual channel independent filtering method is proposed based on the idea of equalization mapping. Firstly, the particle prediction performance is described by particle manipulations of different dimensions, and the accuracy of particle prediction is improved. The improvement of particle degradation of this algorithm is analyzed in the aspects of particle weight and effective particle number. Secondly, according to the problem of lack of particle samples, the new particles are generated based on the filtering results, and the particle diversity is increased. Finally, the introduction of the graphics processing unit(GPU) parallel computing the platform, the “channel-level” and “particlelevel” parallel computing the program are designed to accelerate the algorithm. The simulation results show that the algorithm has the advantages of better filtering precision, higher particle efficiency and faster calculation speed compared with the traditional algorithm of the CPU platform.展开更多
As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algori...As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.展开更多
As a typical implementation of the probability hypothesis density(PHD) filter, sequential Monte Carlo PHD(SMC-PHD) is widely employed in highly nonlinear systems. However, the particle impoverishment problem introduce...As a typical implementation of the probability hypothesis density(PHD) filter, sequential Monte Carlo PHD(SMC-PHD) is widely employed in highly nonlinear systems. However, the particle impoverishment problem introduced by the resampling step, together with the high computational burden problem, may lead to performance degradation and restrain the use of SMC-PHD filter in practical applications. In this work, a novel SMC-PHD filter based on particle compensation is proposed to solve above problems. Firstly, according to a comprehensive analysis on the particle impoverishment problem, a new particle generating mechanism is developed to compensate the particles. Then, all the particles are integrated into the SMC-PHD filter framework. Simulation results demonstrate that, in comparison with the SMC-PHD filter, proposed PC-SMC-PHD filter is capable of overcoming the particle impoverishment problem, as well as improving the processing rate for a certain tracking accuracy in different scenarios.展开更多
传统的温室作业方式依赖于人工操作,工作效率低且难以保证作业的质量和稳定性。温室自主导航系统可以实现温室内自动化导航和作业,提高温室作物的生产效率和品质。因此,设计一种定位与地图构建(Simultaneous Localization And Mapping, ...传统的温室作业方式依赖于人工操作,工作效率低且难以保证作业的质量和稳定性。温室自主导航系统可以实现温室内自动化导航和作业,提高温室作物的生产效率和品质。因此,设计一种定位与地图构建(Simultaneous Localization And Mapping, SLAM)技术下的温室自主导航系统,可利用激光雷达等传感器实时构建温室内的地图,并利用SLAM算法实现自主定位与导航。为了提高系统的鲁棒性和性能,提出了一种基于改进粒子滤波算法的姿态估计方法。试验结果表明:该温室自主导航系统能够高效准确地实现温室内的自主导航任务,为农业生产提供了一种新的自动化解决方案。展开更多
针对纯方位目标跟踪(Bearing-Only Tracking,BOT)系统强非线性特点,提出一种新的解决方案:采用平方根中心差分卡尔曼滤波器(Square-RootCDKF,SRCDKF)产生粒子滤波提议分布,融入最新的观测数据影响;增加改进措施以提高滤波性能,如采用系...针对纯方位目标跟踪(Bearing-Only Tracking,BOT)系统强非线性特点,提出一种新的解决方案:采用平方根中心差分卡尔曼滤波器(Square-RootCDKF,SRCDKF)产生粒子滤波提议分布,融入最新的观测数据影响;增加改进措施以提高滤波性能,如采用系统重抽样算法减少方差、应用马尔可夫链模特卡罗(Markovchain Monte Carlo,MCMC)方法消除粒子贫乏等。仿真表明该算法是有效的,针对当前BOT系统,比传统EKF、PF算法可靠性更好,跟踪精度更高。展开更多
基金supported by the National Natural Science Foundation of China(61302145)
文摘This paper improves the resampling step of particle filtering(PF) based on a broad interactive genetic algorithm to resolve particle degeneration and particle shortage.For target tracking in image processing,this paper uses the information coming from the particles of the previous fame image and new observation data to self-adaptively determine the selecting range of particles in current fame image.The improved selecting operator with jam gene is used to ensure the diversity of particles in mathematics,and the absolute arithmetical crossing operator whose feasible solution space being close about crossing operation,and non-uniform mutation operator is used to capture all kinds of mutation in this paper.The result of simulating experiment shows that the algorithm of this paper has better iterative estimating capability than extended Kalman filtering(EKF),PF,regularized partide filtering(RPF),and genetic algorithm(GA)-PF.
基金supported by the National High-tech R&D Program of China(2015AA70560452015AA8017032P)the National Natural Science Foundation of China(61401504)
文摘The particle filter(PF) algorithm is one of the most commonly used algorithms for maneuvering target tracking. The traditional PF maps from multi-dimensional information to onedimensional information during particle weight calculation, and the incorrect transmission of information leads to the fact that the particle prediction information does not match the weight information, and its essence is the reduction of the information entropy of the useful information. To solve this problem, a dual channel independent filtering method is proposed based on the idea of equalization mapping. Firstly, the particle prediction performance is described by particle manipulations of different dimensions, and the accuracy of particle prediction is improved. The improvement of particle degradation of this algorithm is analyzed in the aspects of particle weight and effective particle number. Secondly, according to the problem of lack of particle samples, the new particles are generated based on the filtering results, and the particle diversity is increased. Finally, the introduction of the graphics processing unit(GPU) parallel computing the platform, the “channel-level” and “particlelevel” parallel computing the program are designed to accelerate the algorithm. The simulation results show that the algorithm has the advantages of better filtering precision, higher particle efficiency and faster calculation speed compared with the traditional algorithm of the CPU platform.
基金Supported by National Natural Science Foundation of China (60634030 60702066) Aerospace Science Foundation (20090853013) Doctoral Program Foundation of China(20060699032)
文摘As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.
基金Projects(61671462,61471383,61671463,61304103)supported by the National Natural Science Foundation of ChinaProject(ZR2012FQ004)supported by the Natural Science Foundation of Shandong Province,China
文摘As a typical implementation of the probability hypothesis density(PHD) filter, sequential Monte Carlo PHD(SMC-PHD) is widely employed in highly nonlinear systems. However, the particle impoverishment problem introduced by the resampling step, together with the high computational burden problem, may lead to performance degradation and restrain the use of SMC-PHD filter in practical applications. In this work, a novel SMC-PHD filter based on particle compensation is proposed to solve above problems. Firstly, according to a comprehensive analysis on the particle impoverishment problem, a new particle generating mechanism is developed to compensate the particles. Then, all the particles are integrated into the SMC-PHD filter framework. Simulation results demonstrate that, in comparison with the SMC-PHD filter, proposed PC-SMC-PHD filter is capable of overcoming the particle impoverishment problem, as well as improving the processing rate for a certain tracking accuracy in different scenarios.
文摘传统的温室作业方式依赖于人工操作,工作效率低且难以保证作业的质量和稳定性。温室自主导航系统可以实现温室内自动化导航和作业,提高温室作物的生产效率和品质。因此,设计一种定位与地图构建(Simultaneous Localization And Mapping, SLAM)技术下的温室自主导航系统,可利用激光雷达等传感器实时构建温室内的地图,并利用SLAM算法实现自主定位与导航。为了提高系统的鲁棒性和性能,提出了一种基于改进粒子滤波算法的姿态估计方法。试验结果表明:该温室自主导航系统能够高效准确地实现温室内的自主导航任务,为农业生产提供了一种新的自动化解决方案。
文摘针对纯方位目标跟踪(Bearing-Only Tracking,BOT)系统强非线性特点,提出一种新的解决方案:采用平方根中心差分卡尔曼滤波器(Square-RootCDKF,SRCDKF)产生粒子滤波提议分布,融入最新的观测数据影响;增加改进措施以提高滤波性能,如采用系统重抽样算法减少方差、应用马尔可夫链模特卡罗(Markovchain Monte Carlo,MCMC)方法消除粒子贫乏等。仿真表明该算法是有效的,针对当前BOT系统,比传统EKF、PF算法可靠性更好,跟踪精度更高。