For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a va...For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a variation of flowrate of R245 fa.The influence of working fluid flowrate on a 500 W ORC system was investigated.Adjusting the working fluid flowrate to an optimal value results in the most efficient heat transfer and hence the optimal heat transfer parameters of the plate heat exchanger can be determined.Therefore,for the ORC systems,optimal working fluid flowrate should be controlled.Using different temperature hot water as the heat source,it is found that the optimal flowrate increases by 6-10 L/h with 5 ℃ increment of hot water inlet temperature.During experiment,lower degree of superheat of the working fluid at the outlet the plate heat exchanger may lead to unstable power generation.It is considered that the plate heat exchanger has a compact construction which makes its bulk so small that liquid mixture causes the unstable power generation.To avoid this phenomenon,the flow area of plate heat exchanger should be larger than the designed one.Alternatively,installing a small shell and tube heat exchanger between the outlet of plate heat exchanger and the inlet of expander can be another solution.展开更多
目的以RNA干扰抑制血管平滑肌细胞(vascu lar smooth musc le cells,VSMCs)ORC1基因,探讨ORC1基因表达抑制后VSMCs增殖的变化。方法实验设置正常对照组、阴性siRNA组及阳性(ORC1+A、ORC1+B、ORC1+C)siR-NA组。应用W estern b lot检测ORC...目的以RNA干扰抑制血管平滑肌细胞(vascu lar smooth musc le cells,VSMCs)ORC1基因,探讨ORC1基因表达抑制后VSMCs增殖的变化。方法实验设置正常对照组、阴性siRNA组及阳性(ORC1+A、ORC1+B、ORC1+C)siR-NA组。应用W estern b lot检测ORC1基因表达的变化;应用MTT比色试验、3H-TdR掺入试验检测VSMCs增殖的情况。免疫细胞化学染色观察增殖细胞核抗原(proliferating cell nuc lear antigen,PCNA)表达。结果①siRNA转染后,3个阳性siRNA转染组ORC1基因表达水平均降低,尤以第2对阳性siRNA抑制效果最为显著,而空白对照组及阴性对照组间ORC1基因表达水平无显著差异。②siRNA转染使ORC1表达减弱后,VSMCs的MTT吸光度值3、H-TdR掺入量和PCNA表达量均较空白对照组及阴性对照组显著降低。结论RNA干扰介导的ORC1基因沉寂可显著抑制VSMCs增殖。展开更多
为降低CO_(2)排放,提高能源利用效率,该文建立超超临界二次再热-碳捕集集成系统。利用碳捕集汽轮机排汽为再沸器提供能量,并在集成系统基础上提出3种优化方法。结果表明,3种优化方案都提高了机组效率和热力性能,热效率分别提高0.508%、1...为降低CO_(2)排放,提高能源利用效率,该文建立超超临界二次再热-碳捕集集成系统。利用碳捕集汽轮机排汽为再沸器提供能量,并在集成系统基础上提出3种优化方法。结果表明,3种优化方案都提高了机组效率和热力性能,热效率分别提高0.508%、1.314%和4.817%,对应煤耗分别降低4.514g/(kW×h)、11.428g/(kW×h)、39.440g/(kW×h)。当设定碳捕集率为96%、CO_(2)再生能耗为3.8GJ/t时,对集成系统及3种优化系统进行技术经济性分析与㶲分析。通过分析可知,方案III的平均发电成本(the levelized cost of energy,LCOE)和CO_(2)减排成本最低;㶲分析表明高压加热器的㶲效率、㶲损普遍高于低压加热器。3种方案中,方案Ⅲ的高压加热器㶲效率明显高于方案Ⅰ与方案Ⅱ,从系统各设备㶲分析对比来看锅炉㶲效率最低。与锅炉相比较汽轮机的㶲损失相对较小,其中超高压缸和低压缸㶲损失所占比例相对较大。展开更多
Itanium is the first generation product processor based on IA-64 architecture. ORC(Open Research Compil-er )provides an open source IPF(Itanium Processor Family)research compiler infrastructure. We have compiled andru...Itanium is the first generation product processor based on IA-64 architecture. ORC(Open Research Compil-er )provides an open source IPF(Itanium Processor Family)research compiler infrastructure. We have compiled andrun NAS Benchmarks on the Itanium machine. This paper briefly describes the performance of orcc, sgicc and gcc inthe following 3 ways: execution time, compilation time, and executable file size. The results show that orcc has near-ly the same performance as sgicc, which is 2 fold faster over gcc in the aspect of execution time. We also find that evenwith the best-optimized program, the utilization ratio of process resources is no more that 70%.展开更多
基金Project (2012AA053001) supported by High-tech Research and Development Program of China
文摘For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a variation of flowrate of R245 fa.The influence of working fluid flowrate on a 500 W ORC system was investigated.Adjusting the working fluid flowrate to an optimal value results in the most efficient heat transfer and hence the optimal heat transfer parameters of the plate heat exchanger can be determined.Therefore,for the ORC systems,optimal working fluid flowrate should be controlled.Using different temperature hot water as the heat source,it is found that the optimal flowrate increases by 6-10 L/h with 5 ℃ increment of hot water inlet temperature.During experiment,lower degree of superheat of the working fluid at the outlet the plate heat exchanger may lead to unstable power generation.It is considered that the plate heat exchanger has a compact construction which makes its bulk so small that liquid mixture causes the unstable power generation.To avoid this phenomenon,the flow area of plate heat exchanger should be larger than the designed one.Alternatively,installing a small shell and tube heat exchanger between the outlet of plate heat exchanger and the inlet of expander can be another solution.
文摘目的以RNA干扰抑制血管平滑肌细胞(vascu lar smooth musc le cells,VSMCs)ORC1基因,探讨ORC1基因表达抑制后VSMCs增殖的变化。方法实验设置正常对照组、阴性siRNA组及阳性(ORC1+A、ORC1+B、ORC1+C)siR-NA组。应用W estern b lot检测ORC1基因表达的变化;应用MTT比色试验、3H-TdR掺入试验检测VSMCs增殖的情况。免疫细胞化学染色观察增殖细胞核抗原(proliferating cell nuc lear antigen,PCNA)表达。结果①siRNA转染后,3个阳性siRNA转染组ORC1基因表达水平均降低,尤以第2对阳性siRNA抑制效果最为显著,而空白对照组及阴性对照组间ORC1基因表达水平无显著差异。②siRNA转染使ORC1表达减弱后,VSMCs的MTT吸光度值3、H-TdR掺入量和PCNA表达量均较空白对照组及阴性对照组显著降低。结论RNA干扰介导的ORC1基因沉寂可显著抑制VSMCs增殖。
文摘为降低CO_(2)排放,提高能源利用效率,该文建立超超临界二次再热-碳捕集集成系统。利用碳捕集汽轮机排汽为再沸器提供能量,并在集成系统基础上提出3种优化方法。结果表明,3种优化方案都提高了机组效率和热力性能,热效率分别提高0.508%、1.314%和4.817%,对应煤耗分别降低4.514g/(kW×h)、11.428g/(kW×h)、39.440g/(kW×h)。当设定碳捕集率为96%、CO_(2)再生能耗为3.8GJ/t时,对集成系统及3种优化系统进行技术经济性分析与㶲分析。通过分析可知,方案III的平均发电成本(the levelized cost of energy,LCOE)和CO_(2)减排成本最低;㶲分析表明高压加热器的㶲效率、㶲损普遍高于低压加热器。3种方案中,方案Ⅲ的高压加热器㶲效率明显高于方案Ⅰ与方案Ⅱ,从系统各设备㶲分析对比来看锅炉㶲效率最低。与锅炉相比较汽轮机的㶲损失相对较小,其中超高压缸和低压缸㶲损失所占比例相对较大。
文摘Itanium is the first generation product processor based on IA-64 architecture. ORC(Open Research Compil-er )provides an open source IPF(Itanium Processor Family)research compiler infrastructure. We have compiled andrun NAS Benchmarks on the Itanium machine. This paper briefly describes the performance of orcc, sgicc and gcc inthe following 3 ways: execution time, compilation time, and executable file size. The results show that orcc has near-ly the same performance as sgicc, which is 2 fold faster over gcc in the aspect of execution time. We also find that evenwith the best-optimized program, the utilization ratio of process resources is no more that 70%.