A robust adaptive control is proposed for a class of uncertain nonlinear non-affine SISO systems. In order to approximate the unknown nonlinear function, an affine type neural network(ATNN) and neural state feedback c...A robust adaptive control is proposed for a class of uncertain nonlinear non-affine SISO systems. In order to approximate the unknown nonlinear function, an affine type neural network(ATNN) and neural state feedback compensation are used, and then to compensate the approximation error and external disturbance, a robust control term is employed. By Lyapunov stability analysis for the closed-loop system, it is proven that tracking errors asymptotically converge to zero. Moreover, an observer is designed to estimate the system states because all the states may not be available for measurements. Furthermore, the adaptation laws of neural networks and the robust controller are given based on the Lyapunov stability theory. Finally, two simulation examples are presented to demonstrate the effectiveness of the proposed control method. Finally, two simulation examples show that the proposed method exhibits strong robustness, fast response and small tracking error, even for the non-affine nonlinear system with external disturbance, which confirms the effectiveness of the proposed approach.展开更多
The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activat...The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activation functions, is used to emulate the equivalent and switching control terms of the classic sliding mode control (SMC). Lyapunov stability theory is used to guarantee a uniform ultimate boundedness property for the tracking error, as well as of all other signals in the closed loop. In addition to keeping the stability and robustness properties of the SMC, the neural network-based adaptive sliding mode controller exhibits perfect rejection of faults arising during the system operating. Simulation studies are used to illustrate and clarify the theoretical results.展开更多
The problem of adaptive stabilization is addressed for a class of uncertain stochastic nonlinear strict-feedback systems with both unknown dead-zone and unknown gain functions.By using the backstepping method and neur...The problem of adaptive stabilization is addressed for a class of uncertain stochastic nonlinear strict-feedback systems with both unknown dead-zone and unknown gain functions.By using the backstepping method and neural network(NN) parameterization,a novel adaptive neural control scheme which contains fewer learning parameters is developed to solve the stabilization problem of such systems.Meanwhile,stability analysis is presented to guarantee that all the error variables are semi-globally uniformly ultimately bounded with desired probability in a compact set.The effectiveness of the proposed design is illustrated by simulation results.展开更多
The problem of direct adaptive neural network control for a class of large-scale systems with unknown function control gains and the high-order interconneetions is studied in this paper. Based on the principle of slid...The problem of direct adaptive neural network control for a class of large-scale systems with unknown function control gains and the high-order interconneetions is studied in this paper. Based on the principle of sliding mode control and the approximation capability of multilayer neural networks, a design scheme of decentralized di- rect adaptive sliding mode controller is proposed. The plant dynamic uncertainty and modeling errors are adaptively compensated by adjusted the weights and sliding mode gains on-line for each subsystem using only local informa- tion. According to the Lyapunov method, the closed-loop adaptive control system is proven to be globally stable, with tracking errors converging to a neighborhood of zero. Simulation results demonstrate the effectiveness of the proposed approach.展开更多
In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neu...In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neural network with both identification and control role, and the latter is a fuzzy neural algorithm, which is introduced to provide additional control enhancement. The feedforward controller provides only coarse control, whereas the feedback controller can generate on-line conditional proposition rule automatically to improve the overall control action. These properties make the design very versatile and applicable to a range of industrial applications.展开更多
For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a r...For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a robust memoryless adaptive NN tracking controller. Unknown time-delay functions are approximated by NNs, such that the requirement on the nonlinear time-delay functions is relaxed. Based on Lyapunov-Krasoviskii functional, the sem-global uniformly ultimately boundedness (UUB) of all the signals in the closed-loop system is proved. The arbitrary output tracking accuracy is achieved by tuning the design parameters. The feasibility is investigated by an illustrative simulation example.展开更多
A new adaptive neural network(NN) output-feedback stabilization controller is investigated for a class of uncertain stochastic nonlinear strict-feedback systems with discrete and distributed time-varying delays and ...A new adaptive neural network(NN) output-feedback stabilization controller is investigated for a class of uncertain stochastic nonlinear strict-feedback systems with discrete and distributed time-varying delays and unknown nonlinear functions in both drift and diffusion terms.First,an extensional stability notion and the related criterion are introduced.Then,a nonlinear observer to estimate the unmeasurable states is designed,and a systematic backstepping procedure to design an adaptive NN output-feedback controller is proposed such that the closed-loop system is stable in probability.The effectiveness of the proposed control scheme is demonstrated via a numerical example.展开更多
针对Stewart平台的六自由度(six degrees of freedom,6-DOF)轨迹跟踪问题,提出一种基于神经网络的非奇异终端滑模控制方法并应用于Stewart平台的位置姿态控制中。通过分析Stewart平台的位置反解和速度反解,建立运动学方程,利用牛顿-欧...针对Stewart平台的六自由度(six degrees of freedom,6-DOF)轨迹跟踪问题,提出一种基于神经网络的非奇异终端滑模控制方法并应用于Stewart平台的位置姿态控制中。通过分析Stewart平台的位置反解和速度反解,建立运动学方程,利用牛顿-欧拉方程建立动力学方程,并结合加速度反解得到了平台的状态空间表达式;基于非奇异滑模面函数,设计非奇异终端滑模控制律。考虑到径向基函数(radial Basis function,RBF)神经网络的逼近特性,采用RBF神经网络对模型未知部分进行自适应逼近,并利用Lyapunov第二法设计了自适应律;通过仿真证明控制器设计的有效性。仿真结果表明,相比于比例积分微分(proportional integral derivative,PID)控制器,提出的RBF神经网络非奇异终端滑模控制器具有更好的轨迹跟踪精度和动态特性。展开更多
基金Project(61433004)suppouted by the National Natural Science Foundation of China
文摘A robust adaptive control is proposed for a class of uncertain nonlinear non-affine SISO systems. In order to approximate the unknown nonlinear function, an affine type neural network(ATNN) and neural state feedback compensation are used, and then to compensate the approximation error and external disturbance, a robust control term is employed. By Lyapunov stability analysis for the closed-loop system, it is proven that tracking errors asymptotically converge to zero. Moreover, an observer is designed to estimate the system states because all the states may not be available for measurements. Furthermore, the adaptation laws of neural networks and the robust controller are given based on the Lyapunov stability theory. Finally, two simulation examples are presented to demonstrate the effectiveness of the proposed control method. Finally, two simulation examples show that the proposed method exhibits strong robustness, fast response and small tracking error, even for the non-affine nonlinear system with external disturbance, which confirms the effectiveness of the proposed approach.
文摘The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activation functions, is used to emulate the equivalent and switching control terms of the classic sliding mode control (SMC). Lyapunov stability theory is used to guarantee a uniform ultimate boundedness property for the tracking error, as well as of all other signals in the closed loop. In addition to keeping the stability and robustness properties of the SMC, the neural network-based adaptive sliding mode controller exhibits perfect rejection of faults arising during the system operating. Simulation studies are used to illustrate and clarify the theoretical results.
基金supported by the National Natural Science Foundation of China (60704013)the Special Foundation of East China University of Science and Technology for Youth Teacher (YH0157134)
文摘The problem of adaptive stabilization is addressed for a class of uncertain stochastic nonlinear strict-feedback systems with both unknown dead-zone and unknown gain functions.By using the backstepping method and neural network(NN) parameterization,a novel adaptive neural control scheme which contains fewer learning parameters is developed to solve the stabilization problem of such systems.Meanwhile,stability analysis is presented to guarantee that all the error variables are semi-globally uniformly ultimately bounded with desired probability in a compact set.The effectiveness of the proposed design is illustrated by simulation results.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA04Z183), National Nat- ural Science Foundation of China (60621001, 60534010, 60572070, 60774048, 60728307), and the Program for Changjiang Scholars and Innovative Research Groups of China (60728307, 4031002)
基金Supported by National Natural Science Foundation of China (60774010), Program for New Century Excellent Talents in University of China (NCET-05-0607), Program for Summit of Six Types of Talents of Jiangsu Province (07-A-020), and Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province (07KJB510114)
文摘适应州反馈的稳定为在的高顺序的随机的非线性的系统的一个类被调查函数 fi 的上面的界限(?? 铄吗??
基金This project was supported by the National Natural Science Foundation (60074013 &10371106)the Natural ScienceFoundation of Education Bureau of Jiangsu (KK0310067) the Foundation of Information Science Subject Group of YangzhouUniversity (ISG030606)
文摘The problem of direct adaptive neural network control for a class of large-scale systems with unknown function control gains and the high-order interconneetions is studied in this paper. Based on the principle of sliding mode control and the approximation capability of multilayer neural networks, a design scheme of decentralized di- rect adaptive sliding mode controller is proposed. The plant dynamic uncertainty and modeling errors are adaptively compensated by adjusted the weights and sliding mode gains on-line for each subsystem using only local informa- tion. According to the Lyapunov method, the closed-loop adaptive control system is proven to be globally stable, with tracking errors converging to a neighborhood of zero. Simulation results demonstrate the effectiveness of the proposed approach.
基金China Postdoctoral Science Foundation and Natural Science of Heibei Province!698004
文摘In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neural network with both identification and control role, and the latter is a fuzzy neural algorithm, which is introduced to provide additional control enhancement. The feedforward controller provides only coarse control, whereas the feedback controller can generate on-line conditional proposition rule automatically to improve the overall control action. These properties make the design very versatile and applicable to a range of industrial applications.
基金This project was supported by the National Natural Science Foundation of China (69974028 60374015)
文摘For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a robust memoryless adaptive NN tracking controller. Unknown time-delay functions are approximated by NNs, such that the requirement on the nonlinear time-delay functions is relaxed. Based on Lyapunov-Krasoviskii functional, the sem-global uniformly ultimately boundedness (UUB) of all the signals in the closed-loop system is proved. The arbitrary output tracking accuracy is achieved by tuning the design parameters. The feasibility is investigated by an illustrative simulation example.
基金supported by the National Natural Science Fundation of China (6080402160974139+3 种基金61075117)the Fundamental Research Funds for the Central Universities (JY10000970001K5051070000272103676)
文摘A new adaptive neural network(NN) output-feedback stabilization controller is investigated for a class of uncertain stochastic nonlinear strict-feedback systems with discrete and distributed time-varying delays and unknown nonlinear functions in both drift and diffusion terms.First,an extensional stability notion and the related criterion are introduced.Then,a nonlinear observer to estimate the unmeasurable states is designed,and a systematic backstepping procedure to design an adaptive NN output-feedback controller is proposed such that the closed-loop system is stable in probability.The effectiveness of the proposed control scheme is demonstrated via a numerical example.
文摘针对Stewart平台的六自由度(six degrees of freedom,6-DOF)轨迹跟踪问题,提出一种基于神经网络的非奇异终端滑模控制方法并应用于Stewart平台的位置姿态控制中。通过分析Stewart平台的位置反解和速度反解,建立运动学方程,利用牛顿-欧拉方程建立动力学方程,并结合加速度反解得到了平台的状态空间表达式;基于非奇异滑模面函数,设计非奇异终端滑模控制律。考虑到径向基函数(radial Basis function,RBF)神经网络的逼近特性,采用RBF神经网络对模型未知部分进行自适应逼近,并利用Lyapunov第二法设计了自适应律;通过仿真证明控制器设计的有效性。仿真结果表明,相比于比例积分微分(proportional integral derivative,PID)控制器,提出的RBF神经网络非奇异终端滑模控制器具有更好的轨迹跟踪精度和动态特性。