期刊文献+
共找到1,336篇文章
< 1 2 67 >
每页显示 20 50 100
Model algorithm control using neural networks for input delayed nonlinear control system 被引量:2
1
作者 Yuanliang Zhang Kil To Chong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期142-150,共9页
The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. ... The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. Neural networks have the ability to "learn"the characteristics of a system through nonlinear mapping to represent nonlinear functions as well as their inverse functions. This paper presents a model algorithm control method using neural networks for nonlinear time delay systems. Two neural networks are used in the control scheme. One neural network is trained as the model of the nonlinear time delay system, and the other one produces the control inputs. The neural networks are combined with the model algorithm control method to control the nonlinear time delay systems. Three examples are used to illustrate the proposed control method. The simulation results show that the proposed control method has a good control performance for nonlinear time delay systems. 展开更多
关键词 model algorithm control neural network nonlinear system time delay
在线阅读 下载PDF
Nonlinear model predictive control based on hyper chaotic diagonal recurrent neural network 被引量:1
2
作者 Samira Johari Mahdi Yaghoobi Hamid RKobravi 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期197-208,共12页
Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was... Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was proposed for modeling and predicting the behavior of the under-controller nonlinear system in a moving forward window.In order to improve the convergence of the parameters of the HCDRNN to improve system’s modeling,the extent of chaos is adjusted using a logistic map in the hidden layer.A novel NMPC based on the HCDRNN array(HCDRNN-NMPC)was proposed that the control signal with the help of an improved gradient descent method was obtained.The controller was used to control a continuous stirred tank reactor(CSTR)with hard-nonlinearities and input constraints,in the presence of uncertainties including external disturbance.The results of the simulations show the superior performance of the proposed method in trajectory tracking and disturbance rejection.Parameter convergence and neglectable prediction error of the neural network(NN),guaranteed stability and high tracking performance are the most significant advantages of the proposed scheme. 展开更多
关键词 nonlinear model predictive control diagonal recurrent neural network chaos theory continuous stirred tank reactor
在线阅读 下载PDF
Adaptive neural network tracking control for a class of unknown nonlinear time-delay systems 被引量:5
3
作者 Chen Weisheng Li Junmin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期611-618,共8页
For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a r... For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a robust memoryless adaptive NN tracking controller. Unknown time-delay functions are approximated by NNs, such that the requirement on the nonlinear time-delay functions is relaxed. Based on Lyapunov-Krasoviskii functional, the sem-global uniformly ultimately boundedness (UUB) of all the signals in the closed-loop system is proved. The arbitrary output tracking accuracy is achieved by tuning the design parameters. The feasibility is investigated by an illustrative simulation example. 展开更多
关键词 nonlinear time-delay system neural network adaptive bounding technique memoryless adaptive NN controller.
在线阅读 下载PDF
Neural network based adaptive sliding mode control of uncertain nonlinear systems 被引量:4
4
作者 Ghania Debbache Noureddine Goléa 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期119-128,共10页
The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activat... The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activation functions, is used to emulate the equivalent and switching control terms of the classic sliding mode control (SMC). Lyapunov stability theory is used to guarantee a uniform ultimate boundedness property for the tracking error, as well as of all other signals in the closed loop. In addition to keeping the stability and robustness properties of the SMC, the neural network-based adaptive sliding mode controller exhibits perfect rejection of faults arising during the system operating. Simulation studies are used to illustrate and clarify the theoretical results. 展开更多
关键词 nonlinear system neural network sliding mode con- trol (SMC) adaptive control stability robustness.
在线阅读 下载PDF
Adaptive control of system with hysteresis using neural networks 被引量:4
5
作者 Li Chuntao Tan Yonghong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期163-167,共5页
An adaptive control scheme is developed for a class of single-input nonlinear systems preceded by unknown hysteresis, which is a non-differentiable and multi-value mapping nonlinearity. The controller based on the thr... An adaptive control scheme is developed for a class of single-input nonlinear systems preceded by unknown hysteresis, which is a non-differentiable and multi-value mapping nonlinearity. The controller based on the three-layer neural network (NN), whose weights are derived from Lyapunov stability analysis, guarantees closed-loop semiglobal stability and convergence of the tracking errors to a small residual set. An example is used to confirm the effectiveness of the proposed control scheme. 展开更多
关键词 neural networks HYSTERESIS adaptive control preisach model.
在线阅读 下载PDF
A Fuzzy-Neural Network Control of Nonlinear Dynamic Systems 被引量:2
6
作者 Li Shaoyuan & Xi Yugeng (Shanghai Jiaotong University, 200030, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期61-66,共6页
In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neu... In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neural network with both identification and control role, and the latter is a fuzzy neural algorithm, which is introduced to provide additional control enhancement. The feedforward controller provides only coarse control, whereas the feedback controller can generate on-line conditional proposition rule automatically to improve the overall control action. These properties make the design very versatile and applicable to a range of industrial applications. 展开更多
关键词 Fuzzy logic neural networks Adaptive control nonlinear dynamic system.
在线阅读 下载PDF
Batch Process Modelling and Optimal Control Based on Neural Network Model 被引量:6
7
作者 JieZhang 《自动化学报》 EI CSCD 北大核心 2005年第1期19-31,共13页
This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network,... This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process. 展开更多
关键词 批量处理 神经网络模型 聚合 重复学习控制 最佳控制
在线阅读 下载PDF
Adaptive neural control for a class of uncertain stochastic nonlinear systems with dead-zone
8
作者 Zhaoxu Yu Hongbin Du 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期500-506,共7页
The problem of adaptive stabilization is addressed for a class of uncertain stochastic nonlinear strict-feedback systems with both unknown dead-zone and unknown gain functions.By using the backstepping method and neur... The problem of adaptive stabilization is addressed for a class of uncertain stochastic nonlinear strict-feedback systems with both unknown dead-zone and unknown gain functions.By using the backstepping method and neural network(NN) parameterization,a novel adaptive neural control scheme which contains fewer learning parameters is developed to solve the stabilization problem of such systems.Meanwhile,stability analysis is presented to guarantee that all the error variables are semi-globally uniformly ultimately bounded with desired probability in a compact set.The effectiveness of the proposed design is illustrated by simulation results. 展开更多
关键词 adaptive control neural network(NN) BACKSTEPPING stochastic nonlinear system.
在线阅读 下载PDF
Rapid optimal control law generation: an MoE based method
9
作者 ZHANG Tengfei SU Hua +2 位作者 GONG Chunlin YANG Sizhi BAI Shaobo 《Journal of Systems Engineering and Electronics》 2025年第1期280-291,共12页
To better complete various missions, it is necessary to plan an optimal trajectory or provide the optimal control law for the multirole missile according to the actual situation, including launch conditions and target... To better complete various missions, it is necessary to plan an optimal trajectory or provide the optimal control law for the multirole missile according to the actual situation, including launch conditions and target location. Since trajectory optimization struggles to meet real-time requirements, the emergence of data-based generation methods has become a significant focus in contemporary research. However, due to the large differences in the characteristics of the optimal control laws caused by the diversity of tasks, it is difficult to achieve good prediction results by modeling all data with one single model.Therefore, the modeling idea of the mixture of experts(MoE) is adopted. Firstly, the K-means clustering algorithm is used to partition the sample data set, and the corresponding neural network classification model is established as the gate switch of MoE. Then, the expert models, i.e., the mappings from the generation conditions to the optimal control law represented by the results of principal component analysis(PCA), are represented by Kriging models. Finally, multiple rounds of accuracy evaluation, sample supplementation, and model updating are conducted to improve the generation accuracy. The Monte Carlo simulation shows that the accuracy of the proposed model reaches 96% and the generation efficiency meets the real-time requirement. 展开更多
关键词 optimal control mixture of experts(MoE) K-MEANS Kriging model neural network classification principal component analysis(PCA)
在线阅读 下载PDF
Fault detection for nonlinear networked control systems based on fuzzy observer 被引量:6
10
作者 Zhangqing Zhu Xiaocheng Jiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期129-136,共8页
Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked cont... Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective. 展开更多
关键词 nonlinear networked control system (NNCS) fault detection T-S fuzzy model state observer time-delay.
在线阅读 下载PDF
Survey on nonlinear reconfigurable flight control 被引量:3
11
作者 Xunhong Lv Bin Jiang +1 位作者 Ruiyun Qi Jing Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第6期971-983,共13页
An overview on nonlinear reconfigurable flight control approaches that have been demonstrated in flight-test or highfidelity simulation is presented. Various approaches for reconfigurable flight control systems are co... An overview on nonlinear reconfigurable flight control approaches that have been demonstrated in flight-test or highfidelity simulation is presented. Various approaches for reconfigurable flight control systems are considered, including nonlinear dynamic inversion, parameter identification and neural network technologies, backstepping and model predictive control approaches. The recent research work, flight tests, and potential strength and weakness of each approach are discussed objectively in order to give readers and researchers some reference. Finally, possible future directions and open problems in this area are addressed. 展开更多
关键词 reconfigurable flight control (RFC) nonlinear dynamic inversion (NDI) BACKSTEPPING neural network (NN) model predictive control (MPC) parameter identification (PID) adaptive control flight control.
在线阅读 下载PDF
Decentralized adaptive neural network sliding mode position/force control of constrained reconfigurable manipulators 被引量:2
12
作者 李元春 丁贵彬 赵博 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2917-2925,共9页
A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooper... A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooperation, the proposed decentralized position/force control scheme can be applied to series constrained reconfigurable manipulators. By multiplying each row of Jacobian matrix in the dynamics by contact force vector, the converted joint torque is obtained. Furthermore, using desired information of other joints instead of their actual values, the dynamics can be represented as a set of interconnected subsystems by model decomposition technique. An adaptive neural network controller is introduced to approximate the unknown dynamics of subsystem. The interconnection and the whole error term are removed by employing an adaptive sliding mode term. And then, the Lyapunov stability theory guarantees the stability of the closed-loop system. Finally, two reconfigurable manipulators with different configurations are employed to show the effectiveness of the proposed decentralized position/force control scheme. 展开更多
关键词 constrained reconfigurable manipulators position/force control model decomposition decentralized control neural network
在线阅读 下载PDF
SVM Approximate-based Internal Model Control Strategy 被引量:15
13
作者 WANG Yao-Nan YUAN Xiao-Fang 《自动化学报》 EI CSCD 北大核心 2008年第2期172-179,共8页
一台支持向量机器(SVM ) 近似底的内部模型控制(IMC ) 策略为同步发电机的蒸气 valving 控制被介绍。建议 SVM IMC 策略包括二主要部分:在内部模型结构的 SVM 近似反的控制器和无常赔偿。SVM 反的控制器经由泰勒扩大用一条输入产量近... 一台支持向量机器(SVM ) 近似底的内部模型控制(IMC ) 策略为同步发电机的蒸气 valving 控制被介绍。建议 SVM IMC 策略包括二主要部分:在内部模型结构的 SVM 近似反的控制器和无常赔偿。SVM 反的控制器经由泰勒扩大用一条输入产量近似途径直接被导出,并且没有进一步的联机训练,它通过非线性的系统鉴定被实现。而且,一个坚韧性过滤器在内部模型结构被用于无常赔偿。模拟为蒸气 valving 控制显示出 SVM IMC 策略的有效性。 展开更多
关键词 内模控制 非线性控制 支持向量机 神经网络 逼近模型
在线阅读 下载PDF
An Adaptive Identification and Control SchemeUsing Radial Basis Function Networks 被引量:2
14
作者 Chen Zengqiang He Jiangfeng Yuan Zhuzhi (Department of Computer and System Science, Nankai University, Tianjin 300071, P. R. China)(Received July 12, 1998) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1999年第1期54-61,共8页
In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an... In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an adaptive fuzzy generalized learning vector quantization (AFGLVQ) technique and recursive least squares algorithm with variable forgetting factor (VRLS). The AFGLVQ adjusts the centers of the RBF while the VRLS updates the connection weights of the network. The identification algorithm has the properties of rapid convergence and persistent adaptability that make it suitable for real-time control. Secondly, on the basis of the one-step ahead RBF predictor, the control law is optimized iteratively through a numerical stable Davidon's least squares-based (SDLS) minimization approach. Four nonlinear examples are simulated to demonstrate the effectiveness of the identification and control algorithms. 展开更多
关键词 neural networks Adaptive control nonlinear control Radial basis function networks Recursive least squares.
在线阅读 下载PDF
Hybrid control based on inverse Prandtl-Ishlinskii model for magnetic shape memory alloy actuator 被引量:2
15
作者 周淼磊 高巍 田彦涛 《Journal of Central South University》 SCIE EI CAS 2013年第5期1214-1220,共7页
The hysteresis characteristic is the major deficiency in the positioning control of magnetic shape memory alloy actuator. A Prandtl-Ishlinskii model was developed to characterize the hysteresis of magnetic shape memor... The hysteresis characteristic is the major deficiency in the positioning control of magnetic shape memory alloy actuator. A Prandtl-Ishlinskii model was developed to characterize the hysteresis of magnetic shape memory alloy actuator. Based on the proposed Prandtl-Ishlinskii model, the inverse Prandtl-Ishlinskii model was established as a feedforward controller to compensate the hysteresis of the magnetic shape memory alloy actuator. For further improving of the positioning precision of the magnetic shape memory alloy actuator, a hybrid control method with hysteresis nonlinear model in feedforward loop was proposed. The control method is separated into two parts: a feedforward loop with inverse Prandtl-Ishlinskii model and a feedback loop with neural network controller. To validate the validity of the proposed control method, a series of simulations and experiments were researched. The simulation and experimental results demonstrate that the maximum error rate of open loop controller based on inverse PI model is 1.72%, the maximum error rate of the hybrid controller based on inverse PI model is 1.37%. 展开更多
关键词 magnetic shape memory alloy HYSTERESIS hybrid control Prandtl-Ishlinskii model neural network
在线阅读 下载PDF
An Optimal Control Scheme for a Class of Discrete-time Nonlinear Systems with Time Delays Using Adaptive Dynamic Programming 被引量:17
16
作者 WEI Qing-Lai ZHANG Hua-Guang +1 位作者 LIU De-Rong ZHAO Yan 《自动化学报》 EI CSCD 北大核心 2010年第1期121-129,共9页
关键词 非线性系统 最优控制 控制变量 动态规划
在线阅读 下载PDF
Distributed Adaptive Tracking Control for Unknown Nonlinear Networked Systems 被引量:2
17
作者 PENG Jun-Min WANG Jia-Nan YE Xu-Dong 《自动化学报》 EI CSCD 北大核心 2013年第10期1729-1735,共7页
在这份报纸,我们为易于一个积极领导人,其仅仅说罐头的非线性的不明确的联网的系统的一个类调查合作追踪问题部分被测量,输入隧道也被扰乱。由神经网络(NN ) 的优点技术,追随者的动力学适当地在某些基础功能上被建模,他们的输入隧... 在这份报纸,我们为易于一个积极领导人,其仅仅说罐头的非线性的不明确的联网的系统的一个类调查合作追踪问题部分被测量,输入隧道也被扰乱。由神经网络(NN ) 的优点技术,追随者的动力学适当地在某些基础功能上被建模,他们的输入隧道被假定也被扰乱。在这个工作,基于观察员的适应控制为可以有非相同的动力学的非线性的联网的系统被建议。它被适当地在一些图状况下面选择参数经由 Lyapunov 理论(UUB ) 显示出全面系统最终一致地合作地被围住。最后,几数字模拟为建议适应控制器的确认被详细描述。 展开更多
关键词 非线性网络系统 自适应跟踪控制 LYAPUNOV理论 分布式 自适应控制器 一致最终有界 网络化系统 动力非线性
在线阅读 下载PDF
Neural Network Predictive Control of Variable-pitch Wind Turbines Based on Small-world Optimization Algorithm 被引量:8
18
作者 WANG Shuangxin LI Zhaoxia LIU Hairui 《中国电机工程学报》 EI CSCD 北大核心 2012年第30期I0015-I0015,17,共1页
通过将混沌映射用于产生初始节点集和进行算子构造,提出一种新的基于实数编码的混沌小世界优化算法。采用4种算法对多例复杂函数的优化问题进行仿真试验,表明所提算法具有能够有效避免陷入局部极小值、快速搜索到最优值的能力。将上述... 通过将混沌映射用于产生初始节点集和进行算子构造,提出一种新的基于实数编码的混沌小世界优化算法。采用4种算法对多例复杂函数的优化问题进行仿真试验,表明所提算法具有能够有效避免陷入局部极小值、快速搜索到最优值的能力。将上述方法应用于变桨距风电机组启动并网时的转速控制,提出一种基于混沌小世界优化算法的神经网络预测控制策略,其预测模型由基于现场数据的神经网络模型建立。仿真与实际测试结果表明,该系统可以根据风速扰动提前预测电机的转速变化,使控制器超前动作,保证系统输出跟踪参考轨迹的方向稳步改变,确保风电机组平稳并网。 展开更多
关键词 优化算法 小世界 风力发电机组 预测控制 神经网络 变桨距 实时编码 混沌映射
在线阅读 下载PDF
Direct adaptive control for a class of MIMO nonlinear discrete-time systems
19
作者 Lei Li Zhizhong Mao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期129-137,共9页
This paper considers the problem of adaptive con-trol for a class of multiple input multiple output (MIMO) nonlinear discrete-time systems based on input-output model with unknown interconnections between subsystems... This paper considers the problem of adaptive con-trol for a class of multiple input multiple output (MIMO) nonlinear discrete-time systems based on input-output model with unknown interconnections between subsystems. Based on the Taylor ex-pand technology, an equivalent model in affine-like form is derived for the original nonaffine nonlinear system. Then a direct adap-tive neural network (NN) control er is implemented based on the affine-like model. By finding an orthogonal matrix to tune the NN weights, the closed-loop system is proven to be semiglobal y uni-formly ultimately bounded. The σ-modification technique is used to remove the requirement of persistence excitation during the adaptation. The control performance of the closed-loop system is guaranteed by suitably choosing the design parameters. 展开更多
关键词 adaptive control nonaffine nonlinear discrete-timesystem equivalent affine-like model neural network (NN).
在线阅读 下载PDF
Block and parallel modelling of broad domain nonlinear continuous mapping based on NN
20
作者 Yang Guowei Tu Xuyan Wang Shoujue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期586-592,共7页
The necessity of the use of the block and parallel modeling of the nonlinear continuous mappings with NN is firstly expounded quantitatively. Then, a practical approach for the block and parallel modeling of the nonli... The necessity of the use of the block and parallel modeling of the nonlinear continuous mappings with NN is firstly expounded quantitatively. Then, a practical approach for the block and parallel modeling of the nonlinear continuous mappings with NN is proposed. Finally, an example indicating that the method raised in this paper can be realized by suitable existed software is given. The results of the experiment of the model discussed on the 3-D Mexican straw hat indicate that the block and parallel modeling based on NN is more precise and faster in computation than the direct ones and it is obviously a concrete example and the development of the large-scale general model established by Tu Xuyan. 展开更多
关键词 model nonlinear continuous mapping neural network parallel modelling.
在线阅读 下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部