Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degrad...Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.展开更多
For the large number of nonlinear degradation devices existing in a project, the existing methods have not systematically studied the effects of random effect on the remaining lifetime(RL),the accuracy and efficiency ...For the large number of nonlinear degradation devices existing in a project, the existing methods have not systematically studied the effects of random effect on the remaining lifetime(RL),the accuracy and efficiency of the parameters estimation are not high, and the current degradation state of the target device is not accurately estimated. In this paper, a nonlinear Wiener degradation model with random effect is proposed and the corresponding probability density function(PDF) of the first hitting time(FHT)is deduced. A parameter estimation method based on modified expectation maximum(EM) algorithm is proposed to obtain the estimated value of fixed coefficient and the priori value of random coefficient in the model. The posterior value of the random coefficient and the current degradation state of target device are updated synchronously by the state space model(SSM) and the Kalman filter algorithm. The PDF of RL with random effect is deduced. A simulation example is analyzed to verify that the proposed method has the obvious advantage over the existing methods in parameter estimation error and RL prediction accuracy.展开更多
Nonlinearity and implicitness are common degradation features of the stochastic degradation equipment for prognostics.These features have an uncertain effect on the remaining useful life(RUL)prediction of the equipmen...Nonlinearity and implicitness are common degradation features of the stochastic degradation equipment for prognostics.These features have an uncertain effect on the remaining useful life(RUL)prediction of the equipment.The current data-driven RUL prediction method has not systematically studied the nonlinear hidden degradation modeling and the RUL distribution function.This paper uses the nonlinear Wiener process to build a dual nonlinear implicit degradation model.Based on the historical measured data of similar equipment,the maximum likelihood estimation algorithm is used to estimate the fixed coefficients and the prior distribution of a random coefficient.Using the on-site measured data of the target equipment,the posterior distribution of a random coefficient and actual degradation state are step-by-step updated based on Bayesian inference and the extended Kalman filtering algorithm.The analytical form of the RUL distribution function is derived based on the first hitting time distribution.Combined with the two case studies,the proposed method is verified to have certain advantages over the existing methods in the accuracy of prediction.展开更多
退化失效阈值是影响设备剩余寿命预测的重要因素。针对现有剩余寿命预测方法忽略失效阈值随机性影响的问题,提出考虑随机失效阈值的设备剩余寿命在线预测方法。首先,基于带测量误差与随机效应的非线性Wiener过程构建设备退化模型;其次,...退化失效阈值是影响设备剩余寿命预测的重要因素。针对现有剩余寿命预测方法忽略失效阈值随机性影响的问题,提出考虑随机失效阈值的设备剩余寿命在线预测方法。首先,基于带测量误差与随机效应的非线性Wiener过程构建设备退化模型;其次,采用极大似然估计(maximum likelihood estimation,MLE)算法估计退化模型参数与随机失效阈值分布系数;然后,在考虑随机失效阈值的基础上推导出设备剩余寿命的概率密度函数(probability density function,PDF),并基于Bayesian原理实时更新退化模型参数,实现对剩余寿命的在线预测。最后,将该方法应用于陀螺仪剩余寿命在线预测分析,结果表明该方法能够有效提高剩余寿命预测的精度与准确性。展开更多
基金Projects(51475462,61374138,61370031)supported by the National Natural Science Foundation of China
文摘Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.
基金supported by the National Defense Foundation of China(71601183)the China Postdoctoral Science Foundation(2017M623415)
文摘For the large number of nonlinear degradation devices existing in a project, the existing methods have not systematically studied the effects of random effect on the remaining lifetime(RL),the accuracy and efficiency of the parameters estimation are not high, and the current degradation state of the target device is not accurately estimated. In this paper, a nonlinear Wiener degradation model with random effect is proposed and the corresponding probability density function(PDF) of the first hitting time(FHT)is deduced. A parameter estimation method based on modified expectation maximum(EM) algorithm is proposed to obtain the estimated value of fixed coefficient and the priori value of random coefficient in the model. The posterior value of the random coefficient and the current degradation state of target device are updated synchronously by the state space model(SSM) and the Kalman filter algorithm. The PDF of RL with random effect is deduced. A simulation example is analyzed to verify that the proposed method has the obvious advantage over the existing methods in parameter estimation error and RL prediction accuracy.
基金supported by the National Defense Foundation of China(7160118371901216)the China Postdoctoral Science Foundation(2017M623415)
文摘Nonlinearity and implicitness are common degradation features of the stochastic degradation equipment for prognostics.These features have an uncertain effect on the remaining useful life(RUL)prediction of the equipment.The current data-driven RUL prediction method has not systematically studied the nonlinear hidden degradation modeling and the RUL distribution function.This paper uses the nonlinear Wiener process to build a dual nonlinear implicit degradation model.Based on the historical measured data of similar equipment,the maximum likelihood estimation algorithm is used to estimate the fixed coefficients and the prior distribution of a random coefficient.Using the on-site measured data of the target equipment,the posterior distribution of a random coefficient and actual degradation state are step-by-step updated based on Bayesian inference and the extended Kalman filtering algorithm.The analytical form of the RUL distribution function is derived based on the first hitting time distribution.Combined with the two case studies,the proposed method is verified to have certain advantages over the existing methods in the accuracy of prediction.
文摘退化失效阈值是影响设备剩余寿命预测的重要因素。针对现有剩余寿命预测方法忽略失效阈值随机性影响的问题,提出考虑随机失效阈值的设备剩余寿命在线预测方法。首先,基于带测量误差与随机效应的非线性Wiener过程构建设备退化模型;其次,采用极大似然估计(maximum likelihood estimation,MLE)算法估计退化模型参数与随机失效阈值分布系数;然后,在考虑随机失效阈值的基础上推导出设备剩余寿命的概率密度函数(probability density function,PDF),并基于Bayesian原理实时更新退化模型参数,实现对剩余寿命的在线预测。最后,将该方法应用于陀螺仪剩余寿命在线预测分析,结果表明该方法能够有效提高剩余寿命预测的精度与准确性。