针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图...针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图像中给定的相似邻域结构的像素提取当前像素的非局部空间信息;其次,计算每个像素的典型性,并对其进行排序,在每次迭代中更新像素的典型性,提高像素聚类的准确性,解决在聚类过程中存在相似类导致的误分类问题;最后,引入子空间聚类概念,为图像不同维度分配适当的权重,提高彩色图像的分割性能.在含噪合成图像和公开数据集BSDS500,MSRA100和AID上实验结果表明,所提算法的模糊划分系数、模糊划分熵、分割精度和标准化互信息平均值分别达到了95.00%,6.66%,98.77%和95.54%,均优于对比的同类算法.展开更多
针对非局部均值去噪算法(NLM)易造成图像边缘模糊问题,提出了一种基于双边滤波和离散余弦变换的改进算法。该算法将双边滤波中的像素空间邻近函数与NLM算法的权值函数相结合,提出新的权值计算公式进而保护图像细节;利用离散余弦变换能...针对非局部均值去噪算法(NLM)易造成图像边缘模糊问题,提出了一种基于双边滤波和离散余弦变换的改进算法。该算法将双边滤波中的像素空间邻近函数与NLM算法的权值函数相结合,提出新的权值计算公式进而保护图像细节;利用离散余弦变换能量集中特性来计算像素相似性权值进而提高运算速度。首先将图像分割成子块,对子块进行离散余弦变换,然后在得到的离散余弦变换系数矩阵中筛选数据,最后用新权值计算公式在经筛选的离散余弦变换系数矩阵中度量像素的相似性。实验结果表明,与原NLM相比,该算法更好地保护了图像边缘细节特征和结构信息,峰值信噪比最大提高了1.4 d B,证明本文的算法去噪效果更佳。展开更多
文摘针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图像中给定的相似邻域结构的像素提取当前像素的非局部空间信息;其次,计算每个像素的典型性,并对其进行排序,在每次迭代中更新像素的典型性,提高像素聚类的准确性,解决在聚类过程中存在相似类导致的误分类问题;最后,引入子空间聚类概念,为图像不同维度分配适当的权重,提高彩色图像的分割性能.在含噪合成图像和公开数据集BSDS500,MSRA100和AID上实验结果表明,所提算法的模糊划分系数、模糊划分熵、分割精度和标准化互信息平均值分别达到了95.00%,6.66%,98.77%和95.54%,均优于对比的同类算法.
文摘针对非局部均值去噪算法(NLM)易造成图像边缘模糊问题,提出了一种基于双边滤波和离散余弦变换的改进算法。该算法将双边滤波中的像素空间邻近函数与NLM算法的权值函数相结合,提出新的权值计算公式进而保护图像细节;利用离散余弦变换能量集中特性来计算像素相似性权值进而提高运算速度。首先将图像分割成子块,对子块进行离散余弦变换,然后在得到的离散余弦变换系数矩阵中筛选数据,最后用新权值计算公式在经筛选的离散余弦变换系数矩阵中度量像素的相似性。实验结果表明,与原NLM相比,该算法更好地保护了图像边缘细节特征和结构信息,峰值信噪比最大提高了1.4 d B,证明本文的算法去噪效果更佳。